
SCHOLAR Study Guide

SQA Advanced Higher Computing
Unit 1
Software Development

David Bethune
Heriot-Watt University

Andy Cochrane
Heriot-Watt University

Ian King
Heriot-Watt University

Heriot-Watt University

Edinburgh EH14 4AS, United Kingdom.

First published 2001 by Heriot-Watt University.

This edition published in 2009 by Heriot-Watt University SCHOLAR.

Copyright © 2009 Heriot-Watt University.

Members of the SCHOLAR Forum may reproduce this publication in whole or in part for
educational purposes within their establishment providing that no profit accrues at any stage,
Any other use of the materials is governed by the general copyright statement that follows.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means, without written permission from the publisher.

Heriot-Watt University accepts no responsibility or liability whatsoever with regard to the
information contained in this study guide.

Distributed by Heriot-Watt University.

SCHOLAR Study Guide Unit 1: Advanced Higher Computing

1. Advanced Higher Computing

ISBN 978-1-906686-11-6

Printed and bound in Great Britain by Graphic and Printing Services, Heriot-Watt University,
Edinburgh.

Acknowledgements
Thanks are due to the members of Heriot-Watt University’s SCHOLAR team who planned and
created these materials, and to the many colleagues who reviewed the content.

We would like to acknowledge the assistance of the education authorities, colleges, teachers
and students who contributed to the SCHOLAR programme and who evaluated these materials.

Grateful acknowledgement is made for permission to use the following material in the
SCHOLAR programme:

The Scottish Qualifications Authority for permission to use Past Papers assessments.

The Scottish Government for financial support.

All brand names, product names, logos and related devices are used for identification purposes
only and are trademarks, registered trademarks or service marks of their respective holders.

i

Contents

1 Software Development Process 1
1.1 Introduction . 2
1.2 Review . 2
1.3 Project progression and scope . 3
1.4 Project proposal . 6
1.5 Feasibility study . 10
1.6 The system investigation . 15
1.7 Summary . 24

2 Interface Design 27
2.1 The need for a user interface . 28
2.2 Type of user interfaces . 29
2.3 Command line interfaces (CLI) . 29
2.4 Review questions . 32
2.5 Menu driven interfaces . 32
2.6 Graphical user interfaces (GUIs) . 36
2.7 Windows . 37
2.8 Icons . 39
2.9 Menus . 40
2.10 Pointers . 40
2.11 Alerts and Warnings . 41
2.12 Dialogue Boxes . 41
2.13 Review questions . 42
2.14 Processing Capabilities of Graphical User Interfaces 42
2.15 Advantages and Disadvantages of Graphical User Interfaces 43
2.16 Special purpose interfaces . 44
2.17 Review question . 45
2.18 Summary . 45

3 Software development languages and environments 49
3.1 Introduction . 51
3.2 Object-oriented languages . 51
3.3 Why object-oriented? . 51
3.4 Object-oriented concepts . 52
3.5 Comparison of object-oriented with other language types 61
3.6 Trends in programming language development 70
3.7 Summary . 77

4 Software Testing and Tools 79

ii CONTENTS

4.1 Software testing in more detail . 80
4.2 Debugging methods . 85
4.3 CASE tools . 92
4.4 Summary . 99

5 High level programming language constructs 1 101
5.1 File handling . 102
5.2 Arrays . 111
5.3 Summary . 117

6 High level programming language constructs 2: Data structures 119
6.1 The stack . 120
6.2 Implementation of a stack . 123
6.3 The queue . 124
6.4 Implementation of a queue . 127
6.5 Review questions . 128
6.6 Records . 128
6.7 Implementation of a record . 129
6.8 Review questions . 140
6.9 Summary . 140

7 Standard algorithms 143
7.1 Searching techniques . 144
7.2 Linear Search . 144
7.3 Binary search . 146
7.4 Implementation of a binary search . 148
7.5 Review questions . 152
7.6 Sorting . 152
7.7 User-Defined module libraries . 168
7.8 Summary . 172

8 End of Unit Test 175

Glossary 177

Answers to questions and activities 182
1 Software Development Process . 182
2 Interface Design . 185
3 Software development languages and environments 188
4 Software Testing and Tools . 193
5 High level programming language constructs 1 196
6 High level programming language constructs 2: Data structures 201
7 Standard algorithms . 203

© HERIOT-WATT UNIVERSITY

1

Topic 1

Software Development Process

Contents

1.1 Introduction . 2

1.2 Review . 2

1.3 Project progression and scope . 3

1.4 Project proposal . 6

1.4.1 Review questions . 10

1.5 Feasibility study . 10

1.5.1 Who carries out the feasibility study? . 10

1.5.2 Feasibility criteria . 10

1.5.3 Technical feasibility . 11

1.5.4 Economic feasibility . 11

1.5.5 Legal feasibility . 12

1.5.6 Schedule feasibility . 13

1.5.7 The feasibility study report . 14

1.5.8 Review questions . 14

1.6 The system investigation . 15

1.6.1 The operational requirements document (ORD) 16

1.6.2 System design . 17

1.6.3 Review questions . 18

1.6.4 Implementation and testing . 19

1.6.5 Evaluation and maintenance . 21

1.6.6 Review Questions . 23

1.7 Summary . 24

Learning Objectives

After studying this topic, you should be able to:

• describe the progression through project proposal, feasibility study (economic,
legal, technical, time), operational requirements document (ORD) and
specification, design, implementation, testing, evaluation and maintenance.

2 TOPIC 1. SOFTWARE DEVELOPMENT PROCESS

1.1 Introduction

This topic builds on the work done at Higher Grade Computing in the Software
Development Process. We revisit the various phases of the software development in
more detail and focus on the progression of a project from its initial proposal right through
to its final implementation on the client site.

1.2 Review

You will recall from the Higher Computing course that the traditional software
development process, referred to as the waterfall model, is an iterative process and
contains a sequence of well-defined stages. A study of the literature on this subject
might reveal various adaptations of these stages; for our purposes the following list is
representative of the processes involved:

1. Analysis;

2. Design;

3. Implementation;

4. Testing;

5. Documentation;

6. Evaluation;

7. Maintenance.

The historical notion is that the development flows down through the stages like water
down a fall, or at least a fish ladder. The method’s sometimes known as the throw-it-
over-the-wall method, on the grounds that the person responsible for one stage throws
his completed work over the wall and thinks no more about it.

The problem is that things don’t work out that way. Mistakes made at one stage of the
process sometimes don’t become apparent until later on. In the worst case, a flaw in the
analysis of the operational requirements might not become obvious until the system’s
been installed.

If a mistake in the system later becomes apparent, the stage where it was made and
all later stages of the process need to be revised. The waterfall becomes more like
a system of locks on a canal, with water being pumped back up to the higher locks.
Figure 1.1 represents this:

© HERIOT-WATT UNIVERSITY

1.3. PROJECT PROGRESSION AND SCOPE 3

��������	
�

�
����
���
�
����
�
���

����
�
��
��������
�

�
�����

�
����

����
�
�����
�
���	�
�����

��������
�	���
�����
����

Figure 1.1: Iterative waterfall model

Although it has some shortcomings , the waterfall model is still widely used, especially
when projects don’t contain a great deal of innovation. It provides a structure that
the development can follow. From the point of view of theory, it’s the basic method
of software development against which other methods can be compared.

1.3 Project progression and scope

For the Advanced Higher course we want to focus on some of the finer details of
the software development process and take forward some of the earlier ideas while
introducing others.

In particular we want to describe the progression of a project through the following
stages as shown in Table 1.1:

© HERIOT-WATT UNIVERSITY

4 TOPIC 1. SOFTWARE DEVELOPMENT PROCESS

Table 1.1: Progression through development

1 Project proposal What is involved and how long should this take in the
overall cycle of events? Who is responsible for this?

2 Feasibility study Is there a valid case for designing a new or updated
system? What are the objectives? Is the old system failing
to meet company requirements?

3 Analysis of the
problem

What are the new system requirements? What are the
costs involved? How long will it take to implement? What
is ’The operational requirements document’ (ORD)?

4 System design What type of hardware, networked or otherwise, software,
inputs, outputs, HCI, training schedules. All input/output
shown with screen designs.

5 Implementation and
testing

Coding and testing of the new system. All program listings
with pseudo-code and expected outcomes documented.

6 Evaluation and
maintenance

Does the new system meet all the requirements outlined
in the specifications? Maintenance schedules should be
included to take into account unforeseen problems such
as coding errors, missing files or lack of hardware
compliance.

The scope of Projects can vary in size, complexity and cost from fairly small, local
developments to large multi-national company contracts involving global interaction.

For example they may:

• Involve changes to existing systems.

• Entail organisational changes.

• Involve a single person or many people.

• Involve a single section of an organisation, or may cross organisational
boundaries.

• Cost anywhere from £100 to many £millions

• Require less than a full day’s work or take several years to complete

© HERIOT-WATT UNIVERSITY

1.3. PROJECT PROGRESSION AND SCOPE 5

Some Examples are given in Table 1.2:

Table 1.2: Scale of projects

Small scale project Medium scale project Large scale project

Student computing project.

Installation of home
computing system.

Computerising a small GP
practice

Computerisation of a small
library with web access.

Updating of office filing
system from manual to
computerised

College extending LAN to
WAN

Multi-national company
updating global network
and hardware.

Supermarket chain
installing new OS and
terminals in all stores
nationwide

Software house
implementing a major
upgrade, globally.

Computer systems: 1 - 10 Computer systems: 20 -
600

Computer systems:
10,000+

You will have probably been involved in some project or another at this stage, or are busy
contemplating one. You might also be aware that hardly a week goes past without some
software venture being reported in the media for good or ill. Computing disasters were
covered in the Higher Computing course and yet, such events are still making news, as
seen in the following government issues:

• June 2004 - thousands of people were stranded at airports across the UK after a
software crash hit the flight data processing system at West Drayton;

• August 2004 - local education authorities had problems processing student loans
because of ongoing computer problems;

• October 2004 - one million cases were stuck in the Child Support Agency
computers due to long term problems in the £500 million system;

• November 2004 - department of Work and Pensions PC network crashed for
several days denying payment to thousands of people. This occurred because
a software update was wrongly sent to 80,000 PCs.

However, not all news is negative! Interesting computing developments also feature
regularly and the following are representative as of 2004/2005:

• ASDA the retail store is following the lead of its American parent company, Wal-
Mart in announcing plans to introduce RFID (Radio Frequency IDentity) tags in
their supply chain. This would abolish the need for barcode labelling of goods.
Tesco and Marks and Spencer are already well advanced in trials which will see a
multi-million pound replacement of present hardware and software systems.

• One of the UK largest IT projects is the NHS National Programme. This will bring
modern computer systems into the NHS and will connect over 30,000 GPs in
England to almost 300 hospitals.

• The NHS has also joined forces with Microsoft who are investing £40 million to
develop computing resources to improve clinical care. Also Microsoft will allow the

© HERIOT-WATT UNIVERSITY

6 TOPIC 1. SOFTWARE DEVELOPMENT PROCESS

NHS to use up to 900,000 software licences on a perpetual basis, saving the NHS
an estimated £330 million

There is quite a debate about the use of RFID. You may wish to consult the following link
to find out more information:

http://www.vnunet.com/features/1160085

Exercise

Review press, computing journals or the internet and list around five recent computing
projects that have been developed or are in the process of being developed. If using the
internet some search engines offer a ’News’ option as well as the ’web’ option.

1.4 Project proposal

The process starts with a perceived need that will originate from a client. The client
may be an individual but in all probability it will be a business or company that requires
changes to be made, either in their existing system or by installing a new one. In most
cases, within the client organisation, management will be responsible for all decisions
regarding the installation of a new system: this can be a major undertaking and be a
costly and time-consuming process.

Important considerations to be addressed at this stage might be:

1. Current system may be too old and expensive to maintain. The cost benefits have
now diminished to such an extent that the system is no longer viable.

2. Present system is so outdated that it can no longer respond to customer demands.
It has fallen behind in terms of technological advances. Business change with the
times and have to adapt to the market place.

3. Current premises inadequate to house and run present system effectively.

4. Dissatisfaction within the business of personnel using current system.

Problems with an existing system in an organisation can come to light from a variety of
sources and for a variety of reasons. Table 1.3 gives some examples of the problems
that might arise from within the organisation:

© HERIOT-WATT UNIVERSITY

http://www.vnunet.com/features/1160085

1.4. PROJECT PROPOSAL 7

Table 1.3: Problems with existing systems

End users • too much paperwork

• errors in system

• system too slow

• bottlenecks

Middle management • difficulty getting reports from system

• problems interacting with other systems

• not meeting targets

• complaints from customers

Senior management • system too labour intensive

• system too costly

• system causing poor service, compared with
competitors

Once the problem has been recognised, a decision has to be made whether to do
anything about it. If the problem seems serious enough, it is usual for somebody in
the organisation, usually a manager, to draw up a report that will define the problem
which is referred to as the problem definition or project proposal. This will outline the
project in terms of the scope and objectives that need to be attained if the problem is to
be solved.

At this stage the objectives of the project may be totally unrealistic.

The project proposal will convert an idea or policy into the details of a potential project,
including the outcomes, outputs, major risks, costs, and an estimate of the resources
and time required to complete. This information is contained in a formal proposal
document.

For large projects a proposal template might be used for the company to complete and
send to competing organisations for tender. This will be a pro forma report that will help
the company to articulate their requirements in a clear and unambiguous manner. It
will be completed by a member of the management team or other responsible person
nominated by the organisation and he/she will be the key contact during this phase of
the enquiry.

The proposal document should include a full company profile and list of project
requirements with options for additional services if required. These could include, for
example, migration routes from the old system to the new, conversion of company data
files (legacy files) to run on the new syste, preferred dates for installation and whether
training is to be onsite or remote.

© HERIOT-WATT UNIVERSITY

8 TOPIC 1. SOFTWARE DEVELOPMENT PROCESS

An example cover page might look like that shown in Figure 1.2.

�����������	

�	���
������������������

��������������������	���
�	�
��������

��
�������
��

 �������!�

 �������"�

�����

��	�����

#$������	
���������������	�����$�����	�������$����������
����������������
����������%��

������������

����������

&����

�����!����"'

Figure 1.2: Proposal document cover page

Further information contained within the document will cover the major points:

• Project outline: a concise summary of the main objectives.

• Project type: small, medium or large.

• Project justification: how did the idea originate and what will it achieve?

• Budget constraints: is sufficient funding readily available (including contingencies).

• Risk factor analyses: what risks are involved, what are the risks of failure?

The company will then receive tenders for the proposed project where the main issues
will be addressed and costed. Depending on the company, a time scale for each

© HERIOT-WATT UNIVERSITY

1.4. PROJECT PROPOSAL 9

phase of the project might also be included together with an indication of the number of
deployed staff, essential resources and a summary of risk assessments for each phase
of the project.

A typical page from the reply document is shown in Figure 1.3.

����������������
��

(�)��*��
������+��

�	

��������

�����

#�
����������	����
!''�����
,�-���,��

&���������
."'''
./'''

#����
."''0'''
."'/0'''

�����!1����"'

 �������

&�����

2
���
��������

#������

&��	
��������

#�������

#����

������ ������&��� 3���&��� *���&���

"'4'"4'/

"54'64'/

'/4'74'/

""4'84'/

!/4'94'/

"'4!'4'/

!'

6'

!"

5/

"'

5

!"!

Figure 1.3: Example reply page

Should the matter be taken further then management will call in consultants with a
view to commissioning a feasibility study which represents the first formal stage of the
software development cycle. Many large organisations, where the need for new systems
almost never stops, have specialist departments for systems analysis and software
development. In the majority of cases, consultants come from an independent company.

© HERIOT-WATT UNIVERSITY

10 TOPIC 1. SOFTWARE DEVELOPMENT PROCESS

1.4.1 Review questions

Q1: Explain what is meant by the scope of a software project.

Q2: Management of a company are concerned about the conversion of their legacy
files to the new system. Give two examples of what might be considered legacy files.

Q3: What is a project proposal document? Outline three items that company
management might include in a project proposal document.

1.5 Feasibility study

You will now realise that the creation of a new system can take months or even
years, and can cost thousands or even millions of pounds. The basic purpose of a
feasibility study is to ascertain whether such expenditure of time and money is likely to
prove worthwhile and whether the objectives of the problem definition can be realised:
aspirations of some companies might be totally unrealistic

The results of this study will determine which, if any, of a number of possible solutions
can be further developed at the design phase.

One result of undertaking a feasibility study may indicate that only a simple solution is
required to solve the problem:

• a software fault may be identified that is easily fixed.

• more staff training might be required if particular software is to be used.

The feasibility study is complete in itself. It should be conducted relatively cheaply and
within a fairly short time frame. There are no legal or contractual requirements at this
stage and neither should there be any committal to further expenditure nor any long
term development.

1.5.1 Who carries out the feasibility study?

Approaches vary from organisation to organisation. Some large organisations have
a committee whose task it is to evaluate new systems. In others, it is customary
to select a working party, made up of management personnel, system analysts and
other employees to look at the problem in question. Other organisations might give the
responsibility to a project director who would be a manager or analyst on the staff.

In most cases the person responsible for undertaking the feasibility study is the
project leader, usually an experienced member of staff appointed by the team of
consultants.

1.5.2 Feasibility criteria

An effective solution to a project may well be determined by operational constraints
within an organisation. These constraints must be taken into account when
commissioning a feasibility study. These can be classified as:

© HERIOT-WATT UNIVERSITY

1.5. FEASIBILITY STUDY 11

1. Technical feasibility

2. Economic feasibility

3. Legal feasibility

4. Schedule feasibility

1.5.3 Technical feasibility

The feasibility study must ascertain what technologies are necessary for the proposed
system to work as it should. It may be the case that suitably advanced technology
does not yet exist. Unless it is the object of the project to design a system to use such
advanced technology, this would rule the project out as being a non-starter. It would
be a foolish move for a feasibility study to evaluate technologies which are either under
development or undergoing testing.

Given that suitable technology does exist, the study must establish if the organisation
already has the necessary resources. If not, the study must make clear what new
resources the organisation would have to acquire. This will also involve determining
whether the hardware and software recommended will operate effectively under the
proposed workload and in the proposed environmental conditions.

The development of a new system involves risks of one kind or another. Every
understanding that might be reached could carry the risk of some misunderstanding:

• software companies and their clients often have different vocabularies and
consequently they appear to be in perfect agreement until the finished product
is supplied.

• management may have unrealistic visions of computer systems. The feasibility
study is where idealism meets reality.

Further issues might include the training of personnel to use the new system,
consideration of service contracts, warranty conditions and the establishing of help desk
facilities for inexperienced users.

1.5.4 Economic feasibility

This deals with the cost implications involved. Management will want to know how much
each option will cost, what is affordable within the company’s budget and what they get
for their money. A cost-benefit-analysis is part of the budgetary feasibility study. If the
project is not cost-effective then there is no point proceeding.

Setting up a new computer system is an investment and involves capital outlay. The
costs of a new system include the costs of acquiring it in the first place (consultancy fees,
program development, etc.); the costs of installing it (disruption of current operations,
cost of new equipment, alteration of workplace, etc.); and the costs of maintaining it
which also includes training.

In the long term management will also want to know the ’break-even point’ when the
new system stops costing money and starts to make money. This is extremely difficult
to quantify. However an accurate estimate of a system’s operational life span is a valid
option and will rely solely on the knowledge and experience of the systems analyst
involved.

© HERIOT-WATT UNIVERSITY

12 TOPIC 1. SOFTWARE DEVELOPMENT PROCESS

Figure 1.4 depicts such a case where the break-even point is at the intersection of the
graphs:

Figure 1.4: Break-even point

Tangible benefits that management would certainly be looking for in the new system
would be:

• reduced running costs

• increased operational speed

• increased throughput of work

• better reporting facilities

Note that not all the costs and benefits lend themselves to direct measurement. For
example, new systems generally affect the morale of the staff involved, for good or ill.
This can only be resolved by competent personnel management practices.

1.5.5 Legal feasibility

This has to do with any conflicts that might arise between the proposed system and legal
requirements: how would the new system affect contracts and liability, are health and
safety issues in place and would the system be legal under such local laws as the UK
Data Protection Act? What are the software licensing implications for the new system?

Software licensing can be quite a thorny problem. Licences can be purchased as:
client licence (per seat), server licence, network licence or site licence and the period
of operation may be annual or perpetual. Software vendors vary in their licensing
regulations so this has to be fully investigated.

© HERIOT-WATT UNIVERSITY

1.5. FEASIBILITY STUDY 13

1.5.6 Schedule feasibility

Schedule feasibility may be assessed as part of technical feasibility. Most organisations
have an annual schedule of events such as the AGM, end of financial year, main holiday
period and so on. Obviously time is a main factor in the development of a new system.

Questions to be asked at this stage might include:

• how long will the proposed system take to develop?

• will it be ready within the specified time-frame?

• when is the best time to install?

For example, a project might have to start within six months; assuming it would take
three months to purchase and install the required hardware and software and a further
six months to train the end users. Such a project is not technically feasible because
of shortage of time so it would not go ahead unless some of the time constraints were
reviewed and changed.

In many cases of project management the scheduling component can be aided by
means of a Gannt chart.

A Gantt chart is like a horizontal bar graph used to plan and schedule projects involving
several concurrent tasks. The horizontal axis represents the time scale and start and
finish times of component parts are graphically represented.

The advantage of a Gantt chart is that it shows, at a glance, the progress of a project as
shown in Figure 1.5.

Figure 1.5: Example of a Gannt chart

© HERIOT-WATT UNIVERSITY

14 TOPIC 1. SOFTWARE DEVELOPMENT PROCESS

1.5.7 The feasibility study report

The final step in the feasibility study is the production of a report for the client company.
This will contain a summary of the findings by the consultants in terms of possible
solutions to the problem with expert guidance and alternative options to consider.
Also included will be proposed project schedules, target dates and cost options with
recommendations to management based on the current system.

If the project could be implemented then management must decide if it should be
implemented. All systems involve costs as well as benefits, tangible or otherwise. As
a general rule management like to feel that benefits are likely to outweigh costs before
proceeding with a project. Other issues that have to be addressed by management in
relation to a new system might include social and political aspects:

• Will customer loyalty be retained?

• Will staff feel threatened?

• Will a move to larger premises be justified?

If management decides that the project should not go ahead then the matter rests: the
feasibility study report is shelved pending future reconsideration, or a different firm of
consultants are hired.

Time taken at this stage is well worth the effort. The decision by any company to
abandon a project at the feasibility phase should not be seen as a failure but as a
sensible business outcome!

If, however, the feasibility report is favourable and the project gets the go-ahead,
the next phase of the software development process is entered, namely a full
system investigation.

Identifying Advantages of a Feasibility Study

An online interactivity is available at this point.

1.5.8 Review questions

Q4: In the context of systems development, explain what is meant by a feasibility study
and who carries it out?

Q5: Identify four kinds of feasibibilty and describe their differences.

Q6: Why is it important that a feasibility study should generate a report?

Q7: Explain what is meant by the term cost-benefit analysis.

Q8: What is the purpose of a Gannt chart?

© HERIOT-WATT UNIVERSITY

1.6. THE SYSTEM INVESTIGATION 15

1.6 The system investigation

The purpose of the system investigation is to determine, in as much detail as is possible
in advance, what has to be done to solve the problem. Either an existing system will
have to be analysed and a new one designed, or a new system will have to be created
from scratch.

If a system (not necessarily computerised) is already in place, the work it carries out
is investigated. This investigation forms the basis for the design of the new system.
We could take as an example a small firm that has always done its accounts by hand.
Its accounting system would be analysed. The new system would be based on this
analysis, so that it performs at least as well as the old one. Of course, the new system
should also offer benefits to the user: it should be easier to use than the old system, or
offer functions that the old system could not carry out.

When an organisation is thinking of something new, there is often not a system in place.
For example, a company might want to start making a new kind of product which will
need to be made using new machinery. In such a case, there is no current system to
investigate and the new system will have to be created on some other basis.

The investigation will be carried out by another representative of the consultants: a
systems analyst. In the case of a large system, there might be a team of systems
analysts. The systems analyst will report to the project leader.

The analyst’s work is undertaken in two stages:

1. completion of a full system investigation.

2. production of an operational requirements document.

The analyst must carry out detailed observation of the operations of the company by
interviewing relevant people and observing how the current system operates. If the
system is large, it may not be possible to interview or observe everything fully within the
time frame, and the investigators may have to use sampling techniques for certain parts
of the system. For example, the boundaries of the system have to be established early
on in the analysis and this will include; the system inputs, the processing it must do and
the outputs that the program is expected to produce.

This task might, at first glance, seem to be fairly straightforward. However investigators
have to wary:

• people fear change, on the grounds - not necessarily justifiable - that it’s usually
for the worse.

• it may be the case that employees feel threatened by the prospect of a new
computer system being brought in. If they are currently doing things by hand, they
may feel that the new computers will pose a threat to their jobs. Even if assured
that no jobs will be lost, they may be anxious about learning new procedures and
be afraid that they won’t be able to cope with the technology.

• an analyst coming in to such an environment may find it difficult to gain the co-
operation necessary to do the job properly.

© HERIOT-WATT UNIVERSITY

16 TOPIC 1. SOFTWARE DEVELOPMENT PROCESS

Eventually, however the investigators must document all system operations. They must
note what functionality is required and what the data processing requirements are.

When the investigation is completed, it will be summarised in an operational
requirements document that describes what the system must do. This document is
sometimes referred to as the functional specification.

1.6.1 The operational requirements document (ORD)

The operational requirements document contains a full description of the problem with
all inputs, processes and outputs. The document is used throughout the remainder of
the development process. For example, test data will be drawn up on the basis of the
information contained in the document.

The management of the client organisation will review the operational requirements
document. The process of reaching an agreement will be iterative: there often follows
discussions with the consultants regarding amendments to the specification. When
clients and consultants are agreed, a final copy, a formal operational requirements
document is produced.

This document will then stand as a legally binding contract between the clients and
the consultants. It serves to protect both parties. The consultants must produce a
system to meet the specification, so it serves to protect the clients. On the other hand,
any additions to the specification that the clients might think up will be regarded as
alterations to the original contract that will incur additional costs, so it serves to protect
the consultants.

The operational requirements document can also be used by the clients to validate
any proposed design offered in the software development stage. Discrepancies and
differences of interpretation can then be sorted out before more detailed development
has been carried out (and that development time wasted).

The operational requirements document will be used by the consultants as a working
document that will inform everyone involved in the development process.

Having gathered as much information as possible, the analyst then has to make sense
of it. The process will be iterative: analysis of the answers to questions usually leads to
more questions and answers.

Even at this stage there are many problems for the analyst to overcome:

• People (especially management) don’t always know what they want of a new
system. When they do know, they can’t always express it clearly.

• Even when expressed clearly, people’s requirements can involve specialised
knowledge that the analyst does not yet possess.

• Different people want different features in a system. Interests can conflict.

The analyst then goes on to write the specification of the operational requirements. This
will be the basis of the contract for the system. It should be written as clearly as possible
and contain no ambiguities. This is by no means easy.

Many attempts have been made to create formal, unambiguous languages for writing
operational requirements. Specifications written in these have not always been

© HERIOT-WATT UNIVERSITY

1.6. THE SYSTEM INVESTIGATION 17

welcomed by clients, who find them hard to understand and are reluctant to accept
them as contracts.

However misunderstandings between customer and client arising from uncertainty in the
operational requirements document can lead to any amount of ill feeling and possible
litigation, resulting in costly outcomes.

When completed, the operational requirements document will contain a functional
specification, a physical specification, a note on data requirements, and a system
prospectus.

• The functional specification will detail what the system will actually do.

• The physical specification will list the hardware needed.

• The data requirements will declare what storage capacity is required.

• The system prospectus will contain a project schedule, and details of the user
documentation and training needed.

The operational requirements document marks the end of what might be called the
investigative phase of the project. When it has been agreed, work passes to the
development phase.

1.6.2 System design

The project now enters the development phase, the first part of which is system design.
The components described in the operational requirements document are brought
together into a coherent whole. Flows of data from one component to another are
clarified. Each component is further refined, usually from the top down, level by level
using such methodologies as

• structure charts

• data flow diagrams

• Jackson structured programming

• pseudocode

until the design is at a low enough level for putting into code.

Design is a creative process. Although methods and guidelines are helpful, judgement
and flair on the part of the software developers are still required to design a software
system.

The final design produced usually results from the iteration of a number of preliminary
designs with increasing formality, as illustrated in Figure 1.6.

© HERIOT-WATT UNIVERSITY

18 TOPIC 1. SOFTWARE DEVELOPMENT PROCESS

�������	

��
��
���	
��

�������	

��
��

����
�����	

��
��

�
�
����

��
��

Figure 1.6: The Process of Design

The design process is usually hierarchical (modular) and results in a chart where the
nodes represent the components of the design, as shown in Figure 1.7. The aim of
this process is to create a system with no inconsistencies and no illegal relationships
existing between the components.

Figure 1.7: Modular Top Down Approach to Design

The design process iterates between design and specification and any errors or
omissions found from earlier stages of the process are fed back and corrected. This
is important to make sure that the system being built is the one that was asked for.
Some analysts call this process of checking that the product matches the specification,
verification, as distinct from validation, whose purpose is to check that the product
is what the customer wants. Other analysts use validation to describe both checking
the product against its specification and confirming that it meets the customer’s
requirements.

Specification is essentially describing what is to be implemented, whereas the design
describes how it is to be implemented.

Once a successful design has been formulated the next stage of the development
process, namely implementation, begins.

1.6.3 Review questions

Q9: What is the purpose of the system investigation and who carries this out?

Q10: State two disadvantages of interviewing personnel as a fact finding method.

© HERIOT-WATT UNIVERSITY

1.6. THE SYSTEM INVESTIGATION 19

Q11: What is an operational requirements document (ORD) and what is its
significance?

Q12: What is the purpose of the functional specification?

Q13: What is meant by the term structured design in the software development
process?

1.6.4 Implementation and testing

This phase of the system development lifecycle can be the crucial part of the project.
This is where the theory of analysis and design is put into practice and often problems
not previously encountered are discovered. However, by giving enough consideration
to the implementation phase, problems may be anticipated and unavoidable problems
managed.

Tasks to be carried out during implementation will include:

• Coding and testing of the system;

• Human Computer Iinterfaces fully designed and tested;

• Setting up hardware on site;

• Legacy files converted to correct formats and media;

• Manuals and documentation completed and available;

• Staff trained.

Here, the actual coding takes place in a language suited to solving the problem and
success here will be attributed to the expertise of the programming team.

It’s important that the design is tested and that the testing, to be of any value, has to be
systematic.

Dry runs and structured walkthroughs are used to test individual modules. Test data
is designed using the following parameters: the input, which is often called the test
case; the reason for choosing that test case; and the expected result. A set of such
cases is designed for each module. The designer then runs the test cases through the
pseudocode to check, as far as possible, that the logic is correct. (The same test data
will be used later, to test the actual code.)

Top-down testing goes with top-down development. In top-down testing, a module is
tested as soon as it is coded. Coding and testing can be regarded as a single activity,
the purpose of which is to ensure that the detailed logic of the module is correct, but it
can also reveal design errors in the overall structure.

With large applications, things become a little more complicated. The approved
approach is still top-down. However, the system has to be divided into sub-systems
that are developed separately. What happens, then, is that modules are created and
tested within their sub-systems. When all modules have been tested, the sub-system
as a whole is tested. Then the sub-systems are brought together, or integrated, and the
complete system is tested.

© HERIOT-WATT UNIVERSITY

20 TOPIC 1. SOFTWARE DEVELOPMENT PROCESS

Test Strategies

Two test strategies that are usually implemented at different stages of the testing process
are black box testing and white box testing.

In black box testing (Figure 1.8), sometimes called functional testing, the program
specification is used as the basis for the testing procedures independent of any
knowledge of the code, hence the term black box. Test data will be used to cover all
inputs and outputs within the scope of the program.

���� ������

Figure 1.8: Black box

White box testing (Figure 1.9), sometimes called structural testing, tests the actual code
structure rather than its function. In this case a knowledge of how the code works is
essential and accurate test results will rely on the testers’ understanding of what the
program is supposed to do. White box testing precedes black box testing since the
source code is produced late in the development process.

���� ��������������	�
�����

�����������������
��������	�

������
��������	�������

Figure 1.9: White box

In order to fully test a software project both black and white box testing are required.

Finally, the system is installed on the client’s site, and is subjected to what is called
acceptance testing: if it passes, it’s accepted.

The implementation phase will also see the acquisition of the necessary hardware
required to support the new system. This could range from a simple conversion of
an already existing system to the commissioning of a completely new system installed
in a purpose-built site. If networked then this would involve cabling strategies (copper,
fibre) or may include wireless connectivity.

The next aspect to be considered is the changeover strategy from the old system, should
one exist, to the new. There are several approaches that can be adopted from the
conversion options: Parallel, Phased, Pilot, Direct and Combination.

Parallel conversion involves running the new system in parallel with the old one for a
period of time ranging from a few weeks to many months, depending on the complexity
of the system. An advantage here is that the old system can serve as backup should
anything go wrong and time is given to the users to become familiar with the new system.
An obvious disadvantage is the duplication of effort in processing duplicate data on the
two systems.

Phased conversion is similar to parallel implementation, but is carried out in smaller,
more manageable sections. Here the new system gradually takes over thereby keeping

© HERIOT-WATT UNIVERSITY

1.6. THE SYSTEM INVESTIGATION 21

risks to a minimum and focusing on particular stages at any one time. However a phased
implementation can take longer to achieve and problems may arise when controlling old
and new phases as separate entities.

Pilot conversion is a fairly safe option since it would either be a retrospective trial on
data previously processed by the old system or be restricted to a particular section of the
old system and tested. If successful then a changeover can be implemented in either
approach. Pilot implementation will also allow a number of trials to be conducted until
an acceptable version are ready. The advantages of pilot implementation are that the
disruption to the system is minimal and there is less pressure for success.

Direct conversion is the ’big bang’ approach with immediate conversion from old
to new. It is usually the most practical solution and attracts the minimum costs
and disruption. However the system and the users must be fully prepared and the
changeover done at a time when the workloads are at a minimum. The greatest risk is
that in the event of failure, the old system is not available for backup.

Combined conversion involves a mixture of approaches that are often appropriate.
For example, some parts of a system may be changed over directly without too many
problems, whereas others may have to be tested by piloting. This approach depends
entirely on the specific application and the existing system.

1.6.5 Evaluation and maintenance

When the new software system is up and running it is important to evaluate it in terms
of running to the original specification.

Evaluations of various kinds are an important aspect of the software development
industry.

Evaluations are used to determine if systems are usable, cost effective, conforming
to performance criteria, etc. The basis of evaluation is in social science methods using
techniques such as observation, interviews, and questionnaires. Additionally techniques
such as automatic data logging are used. Many organisations bring in consultants who
design and carry out evaluations as the skills required to carry out effective evaluations
are highly specialised.

There is no limit to the number or type of criteria that are used in an evaluation. A
very important aspect of planning evaluations is defining the criteria. Listed below are a
number of evaluation criteria used in industry:

• the time it takes to install a piece of equipment;

• the number of errors an operator makes while doing a specific task;

• the time it takes an operator to complete a task;

• the number of times a computer crashes or hangs;

• the number of phone calls made to a help-line;

• the number of times a user consults a manual.

The key criterion in evaluating a software product has to be whether it is fit for purpose
i.e. does it meet the original specification and allow the client to carry out their tasks?

© HERIOT-WATT UNIVERSITY

22 TOPIC 1. SOFTWARE DEVELOPMENT PROCESS

Main questions that may be asked are:

• how closely does the solution match the specification?

• is the solution what the clients were looking for?

Other matters for review will include costs and schedules.

When the system has been installed and has passed its acceptance testing,
maintenance comes into effect. Corrective maintenance may have to be carried out,
to deal with errors that did not come to light during testing.

This, as a rule, is the most time consuming stage. Software does not wear out but
it usually needs subsequent modification. Some bugs or design shortcomings only
become apparent over time. In addition changes might have to be made to adapt the
system to new demands.

Any enhancement to the system is also called maintenance. This may take the form of:

• installation of faster printers/fax machines requiring updated drivers

• use of more network servers

• extra hardware - interactive whiteboards, graphics tablets, wireless routers

• new network cabling topology

In terms of time, maintenance is often the longest part of any project, and the part that
is least written about.

It can be tempting to add patches as they are required. However, changes should be
made in an organised manner, having regard to the system as a whole and following
good practice in software development.

Proper maintenance depends on accurate error reporting from users and a maintenance
log should exist for recording such events.

There are different categories of software maintenance: corrective, adaptive, perfective
and preventive.

Corrective maintenance is concerned with the repair of defects such as logic or coding
errors found in the code after the beta testing stage.

Adaptive maintenance serves to modify the software should it be used in a new
environment such as a new operating system for example.

Perfective maintenance deals with updating the software in response to user requests.
User requirements may change because the voice network is to be integrated with the
data network, for instance.

Preventive maintenance deals with updating the system documentation and changing
the structure of the software to ease future maintainability.

Having progressed through the various phases of software development it is interesting
to revisit the ’waterfall’ diagram, only this time the percentage costs in relation to
the overall development have been included. This puts the development phases into
perspective as shown in Figure 1.10:

© HERIOT-WATT UNIVERSITY

1.6. THE SYSTEM INVESTIGATION 23

��������
��

��
��������
�
��

�
����
��

�
����
 �

!
�����
" �

#�
����
�	���
�����
����

$��

Figure 1.10: Relative costs of development phases as percentage of total

1.6.6 Review Questions

Q14: Outline four tasks that have to done during the implementation phase of software
deveopment.

Q15: What is the difference between black box and white box testing startegies?

Q16: In the testing phase, test cases are often laid out in tables with columns. What
are the four most common labelled columns used?

Q17: In the changeover from the old system to the new the following implementations
exist:

1. Parallel

2. Pilot

3. Phased

4. Direct

Outline each method.

© HERIOT-WATT UNIVERSITY

24 TOPIC 1. SOFTWARE DEVELOPMENT PROCESS

Q18: List two main questions that might be asked in an evaluation of a program as
being fit for purpose.

1.7 Summary

This topic has covered details of the software development process, considering the
progression of a project through the various phases.

You should now be aware of the following outcomes:

• the progression of a project from initial proposal to implementation and the
methodologies used during the various stages;

• the significance of the feasibility study (economic, legal, technical and schedule);

• the significance of the operational requirements document (ORD).

End of topic test

Q19: The list below outlines the stages involved in the software development process.

A) Design of the system

B) Analysis of the requirements of the system

C) Definition of the problem

D) Maintenance of the system

E) Feasibility study

F) Collecting the information requirements of the system

G) Implementing and evaluating the system

Place them in the correct order.

Q20: Which one of the stages would involve testing the system?

Q21: Which stage would determine whether or not the system would be technically or
economically worthwhile?

Q22: During which stage would the system specification be documented?

Q23: During which stage would user documentation be produced?

Q24: Which one of the following is a graphical notation used to describe the structure
of software?

a) Outline diagram
b) Structure chart
c) Gannt chart
d) None of these

© HERIOT-WATT UNIVERSITY

1.7. SUMMARY 25

Q25: Pseudocode is a notation used to describe programs.

a) True
b) False

Q26: What does the term test data mean?

Q27: What type of testing splits a system into modules where outputs are checked
against inputs for each?

a) Trace routine
b) White box
c) Maintenance
d) Black box

Q28: The type of maintenance that deals with updating a system in line with user
requests is called ������� maintenance.

© HERIOT-WATT UNIVERSITY

26 TOPIC 1. SOFTWARE DEVELOPMENT PROCESS

© HERIOT-WATT UNIVERSITY

27

Topic 2

Interface Design

Contents

2.1 The need for a user interface . 28

2.2 Type of user interfaces . 29

2.3 Command line interfaces (CLI) . 29

2.4 Review questions . 32

2.5 Menu driven interfaces . 32

2.6 Graphical user interfaces (GUIs) . 36

2.7 Windows . 37

2.8 Icons . 39

2.9 Menus . 40

2.10 Pointers . 40

2.11 Alerts and Warnings . 41

2.12 Dialogue Boxes . 41

2.13 Review questions . 42

2.14 Processing Capabilities of Graphical User Interfaces 42

2.15 Advantages and Disadvantages of Graphical User Interfaces 43

2.16 Special purpose interfaces . 44

2.17 Review question . 45

2.18 Summary . 45

Learning Objectives

After studying this topic, you should be able to:

• compare different user-interface design styles (menu driven, textual, graphical).

28 TOPIC 2. INTERFACE DESIGN

This topic looks at interfaces and makes a comparison of the different user-interface
designs that have developed throughout the computing age. The various types are
discussed with emphasis on the relative advantages and disadvantages of each.

The "user interface" of a computer system is the component of the system which
facilitates interaction between user and the system. Thus, the user interface must
enable two-way communication by providing feedback to the user, as well as functions
for entering data required by the system.

2.1 The need for a user interface

In the early days of computing, computers were large, expensive machines. Programs
and data were fed into the computer on punched cards or paper tape, and programs
ran in batch mode, with only an operator present, not the user. A program would either
run to completion and produce the expected output, or it would fail, usually terminating
prematurely, perhaps producing only incomplete results, or none at all with often obscure
error message on the operator’s console.

The only people who interacted with computers on a regular basis at this time were
highly-trained engineers and scientists in research facilities. The cost and size of these
computers made their wide-spread use impractical. At this time, communicating with
the computer was a very complex task which required a detailed knowledge of the
computer’s hardware.

Advances made in technology allowed computers to be made smaller and affordable.
As a result of this, and the increase in productivity afforded by computers, their use
became more widespread.

With various people from diverse backgrounds now using computers in everyday life,
came the need for a user-friendly interface through which the average person could
interact productively with a computer system.

This led to the development of various types of user interfaces which catered for different
types of users.

Nowadays, the vast majority of programs are interactive - the processor spends most of
its time waiting for the user to input some data (usually from the keyboard) or to click a
button or select from a menu, to indicate what the program should do next. Also the user
interface is very often graphical. It includes, as well as representations of the application
data or objects, graphically-represented controls such as buttons, menus, scroll-bars,
forms, and dialogue boxes, collectively known as widgets.

© HERIOT-WATT UNIVERSITY

2.2. TYPE OF USER INTERFACES 29

2.2 Type of user interfaces

There a many different types of user interface currently in use. Each different type of
interface can be characterised by the style of interaction it supports. The most common
styles include:

• Command driven;

• Menu driven;

• Graphical user interfaces (GUI)

• Special purpose

Styles are chosen by interface designers to support particular tasks. Many systems
have a mixture of different styles of interaction to support different tasks and subtasks.

2.3 Command line interfaces (CLI)

The command line interface was the first interactive user interface. It is derived from
the teletypewriters (TTYs) that were used to communicate with mainframes. TTYs
were notoriously prone to bottlenecks since commands were sent to the computer
over relatively slow serial communication links and once there they had to be decoded.
Thus to minimise the bottleneck, commands had to be short which led to very cryptic
commands since every keystroke counted. Output was also limited since it was
generated typewriter style, one character at a time.

This changed when the TTY gave way to the video display terminals (VDTs). These
allowed a cursor to be located anywhere on the screen. This in turn allowed information
to be printed anywhere on screen. With this capability of the VDT, a user with a few
special keystrokes could enter information anywhere on the screen (within limits), and
could go back and update the information or correct mistakes. The electronic VDT gave
tremendous advantages over the paper based TTY.

Command-driven interfaces do not require much effort in the area of screen design and
screen management since the user types everything into the system. A basic black or
white background screen with white or black text is normally used. An example of a
DOS screen is shown in Figure 2.1.

© HERIOT-WATT UNIVERSITY

30 TOPIC 2. INTERFACE DESIGN

Figure 2.1: An example DOS screen

Early operating systems (and some still in use, such as DOS and UNIX) provided
a command line user interface. Commands are entered at a command prompt and
validated by the command language interpreter before they are carried out. These
commands are usually words or meaningful mnemonics chosen to represent the nature
of the activity. For example, in MS-DOS the command to perform a copy command is
started with the word COPY. In UNIX type systems, the copy command is usually started
with the characters cp. As these commands are usually entered from a keyboard, the
designers of the system try to limit the amount of typing that the user has to perform.

Further examples of UNIX and DOS commands are shown below:

MS DOS

dir - display the contents of the current directory

cd - change directory

ren - rename a file

UNIX

ls - display the contents of the current directory

cd - change directory

mv - rename a file

Typical DOS commands would be:

���� ������ 	
��
����� ��������� {rename Myfile.bat to Names.bat}

���� ���
 ����� �� {copy all text files to the a:drive}

Command-driven interfaces must be equipped with error handling and message
generation routines since users inevitably make mistakes in typing. Message generation

© HERIOT-WATT UNIVERSITY

2.3. COMMAND LINE INTERFACES (CLI) 31

routines are also needed to alert the user to a change in the system’s status. A help
facility must also be provided to allow new users to the system to learn the commands
of the system.

In DOS, for example, by typing ’Help’ after the prompt, will display all the commands
available to the user. Typing in ’Help’ followed by a command will produce more
information on that command.

Inexperienced users, however tend to be uncomfortable when using CLI systems, as the
commands are not always easy to remember. Also, the error reporting from CLI systems
tends to assume that the user has a certain amount of expertise, and can understand
the somewhat cryptic messages that some systems produce when presented with
unexpected or erroneous input.

For more experienced users, CLI based systems can allow complicated and
sophisticated operations to be performed, and when combined with scripts (small
programs written using the command language of the Command Line Interpreter)
provide a convenient way of automating some of the more time-consuming tasks of
administering a computer system.

A very popular operating system at the moment is Linux (derived from UNIX) which, at
its most basic can provide a command line interface. It offers a selection of what are
called shells; which surrounds the kernel of the operating system. Each shell has its
set of commands and each command have a set of options or switches that can be
used to shape its behaviour. Commands can be typed in directly and the shell acts as a
command interpreter, executing the command if possible and sending an error message
if not.

A series of commands can be brought together to make a shell program or script. A
script can be a straightforward sequence of commands (to carry out, say, a sequence of
actions that you often want the computer to perform) but it can also be much more.
The scripting language is, in effect a programming language (much like a present-
day scripting language used in Web page design). It provides high-level programming
structures such as selection, repetition and modularity.

The shells and the scripting language offer the user precise control of the operating
system. However, not everyone particularly wants to learn commands and switches and
all the rest of it. So Linux also offers a selection of GUIs, rather than just one.

Advantages of command line interfaces:

• They may be implemented using cheap, alphanumeric displays.

• More experienced users prefer to have direct control over the operations of the
computer.

• Commands of almost arbitrary complexity can be created by combining individual
commands. This allows command macros and command language programs to
be written.

• It is faster to issue a command sequence directly rather than searching through a
menu.

© HERIOT-WATT UNIVERSITY

32 TOPIC 2. INTERFACE DESIGN

Disadvantages of command interfaces:

• Users have to learn a command language which is sometimes complex. In some
cases few users ever learn the complete language. The learning time for this type
of interface is also greater than that for menu systems and GUIs. New users spend
more time learning the interface than getting work done on the computer.

• Users always make mistakes in typing. This requires error handling and message
generation facilities to be included in the command language processor. Systems
interaction is through a keyboard. The interface cannot make use of pointing
devices.

• For a novice it can be quite daunting and difficult to get even the simplest of
operations performed.

• Commands across different operating systems are seldom the same. Users must
become familiar with different command languages.

2.4 Review questions

Q1: Identify two situations where a command driven interface would be more
appropriate than menu driven.

Q2: Outline two advantages and two disadvantages of a command driven interface.

Q3: Name three operating systems that you have come across that use command
driven interfaces.

2.5 Menu driven interfaces

Menu driven interfaces present the user with a list of options from which to select. The
user may make this selection via a keyboard or a pointing device such as a mouse.
Selecting an option may initiate a command (such as ’save’ or ’print’) or may present
the user with a sub-menu which has another list of options. These lower-level menus
are said to be nested inside the menu that activates them. An example is shown in
Figure 2.2.

© HERIOT-WATT UNIVERSITY

2.5. MENU DRIVEN INTERFACES 33

Figure 2.2: Nested menu system

There are three major categories into which menus can be divided:

1. Full screen menus

2. Bar and Pull-down Menus

3. Pop-up Menus

Full screen menus. These menus usually present the options to the user as a
sequential list which occupies the entire screen. This is usually followed by a message
prompting the user to select one of the options. In order to facilitate quick selection, the
options may be numbered or a letter may be used to uniquely identify each option. In
either case, the user selects an option by simply entering the corresponding number or
letter.

The screen shot in Figure 2.3 shows a typical full screen menu example where an option
is chosen using the mouse or cursor keys to highlight the choice :

Figure 2.3: Full screen menu

© HERIOT-WATT UNIVERSITY

34 TOPIC 2. INTERFACE DESIGN

Bar and pull-down menus. The main options available to the user are presented as
pads on a horizontal bar across the screen. When the user selects one of the pads
on this menu, the second-level options are displayed in a pull-down menu. This type of
menu system is primarily used in conjunction with a pointing device. However, options
may also be selected using ’short-cut’ key combinations and arrow keys.

Consider the following screen shot as shown in Figure 2.4:

Figure 2.4: Drop-down menu

Initiation of any of the File commands may be achieved by placing the mouse pointer
over the desired option and clicking once. Alternatively by using a ’hot key’ combination
(alt key + highlighted letter) the same effect can be produced (same semantics, different
syntax) - only more quickly.

The following Table (Table 2.1) summarises some of these common ’hot key’ commands.

Table 2.1: ’Hot key’ commands

Alt + O Open a saved file

Alt + S Save file
Alt + P Print file
Alt + X Exit menu

Pop-up menus. These menus usually appear as a box with one of the options already
selected. When the user points to the box with a mouse and presses the mouse button,
the other options are displayed in a list. The user can then select the required option with
the mouse. The menu options remain visible only while the mouse button is depressed.
These menus are usually used in the task area of the application. If all the options
cannot be displayed on the menu, the menu may scroll automatically or on command
from the user.

The following example in Figure 2.5 illustrates a pop-up menu system:

© HERIOT-WATT UNIVERSITY

2.5. MENU DRIVEN INTERFACES 35

Figure 2.5: Pop-up menu

Menu driven interfaces tend to be favoured by inexperienced computer users who feel
safer and more confident with the system taking more control of the interaction. Skilled
computer users would prefer a command line system, as they feel constrained by having
to navigate a hierarchical menu system to achieve an objective which could be achieved
with a single command.

The advantages of menu systems are:

• The user is presented with a choice and so does not need to remember any
commands. This interface is suitable for beginners and knowledgeable intermittent
users.

• The opportunities for making serious errors are reduced since the user does not
have to type in any commands.

• Menus can utilise special pointing devices such as mice, trackballs and light pens.
Thus the typing effort required can be kept to a minimum.

• Context-dependent help can be provided since it is possible to keep track of the
user’s position in the menu system and link this to a help system.

Their disadvantages are:

• They are not as concise as command-driven interfaces. Accomplishing a task in a
menu driven interface generally involves more steps than is required for doing the
same task in a command-driven interface.

• If there are a large number of options available, it may difficult to structure the
menu system so that the user is not presented with an unacceptably large menu.

• Tasks which involve logical operators (such as ’and’, ’or’) may be awkward to
express in a menu system.

© HERIOT-WATT UNIVERSITY

36 TOPIC 2. INTERFACE DESIGN

2.6 Graphical user interfaces (GUIs)

The first commercially successful GUI was the Apple Macintosh user interface, released
in 1984, which also served as the Mac’s operating system (OS). It evolved from an
earlier GUI found on the LISA computer (also made by Apple), which did not survive.
Some advanced users did not like this new interface because they preferred the CLI,
however it did appeal to casual and inexperienced users because they could interact
more easily with the computer.

The following screen in Figure 2.6 is from the early Lisa and MacIntosh GUI:

Figure 2.6: MacIntosh GUI

After the debut of the Mac Operating System (OS) a number of other GUIs appeared on
the scene. The fundamental problem involved with implementing a GUI on IBM PCs was
that the operating system, DOS, did not possess many of the necessary building blocks.
As a result these resources had to be created and then piled on top of DOS. Because of
this they tended to be slow and memory intensive. Despite these problems, there were a
number of successful implementations. Chief of these were Quarterdeck’s DESQView,
Digital Research’s GEM and Microsoft’s Windows, which is still going through various
transformations.

The main elements of a Graphical User Interface are as follows:

1. Windows

2. Icons

3. Menus

4. Pointers

5. Alerts and Warnings

6. Dialogue Boxes

© HERIOT-WATT UNIVERSITY

2.7. WINDOWS 37

The first four elements were responsible for the term ’WIMP’ being applied to these types
of interfaces. An example of a WIMP environment is shown in the following screen shot:
(Figure 2.7):

Figure 2.7: WIMP environment

Using a WIMP environment allowed the user to directly manipulate objects on the
screen and perform operations such as saving files to disk, copying files or launching
applications using drag, drop and click operations via the mouse.

2.7 Windows

A window is an interface component through which objects and actions are presented
to the users. It is an area of the screen and is dedicated to a specific purpose. All
messages, programs, icons and dialogs are contained in windows.

Windows may be tiled or overlapping. Tiled windows occupy a fixed area of the screen
and no window can use the space occupied by another window. If one window is
enlarged, all other windows are shrunk to maintain the tiled arrangement.

Overlapping windows do not occupy a fixed area of the screen. These can be moved
around by the user at will. These windows can also be resized without affecting the
surrounding windows. Overlapping windows can be obscured partially or wholly by other
windows as shown in Figure 2.8.

© HERIOT-WATT UNIVERSITY

38 TOPIC 2. INTERFACE DESIGN

Figure 2.8: Example of overlapping windows

Overlapping windows are more flexible especially when large screen areas are
unavailable.

Tiled windows, however, are more productive since the entire area of these can be
viewed without obstruction.

Both tiled and overlapping windows may also be scrolling. When the physical size
of a window does not allow all the elements within that window to be displayed, it
becomes necessary to be able to move elements currently within the display area of
the window out and move the undisplayed elements of the window into the display area.
This process is known as scrolling and windows that have this capability are known as
scrolling windows.

Figure 2.9 shows an example of tiled windows with three active applications; graphics,
spreadsheet, Notepad:

© HERIOT-WATT UNIVERSITY

2.8. ICONS 39

Figure 2.9: Tiled windows

The major design issue surrounding windows is whether to make them tiled, overlapping
and whether or not to make them scrolling. This depends mainly on the application being
developed. The common approach is to try to model the windows to be consistent with
the rest of the interface.

2.8 Icons

An icon is a pictorial representation of an object or action. Icons can represent objects
that users want to work on or actions that users want to perform. A unique icon also
represents an application when it is minimised. Care must be taken when designing
icons. The pictures must be carefully drawn so that they are understandable by users.
The purpose of the icon must also be clear to users; hence great emphasis must be
paid on the choice of picture used in the icon.

Figure 2.10 shows some icons representing actions in the Microsoft Word application.
Many of the previous screenshots also show icons.

© HERIOT-WATT UNIVERSITY

40 TOPIC 2. INTERFACE DESIGN

Figure 2.10: Examples of icons

2.9 Menus

Menus have been previously defined and discussed. The Graphical User Interface can
support all types of menus. The more common types found in this interface are pull-
down menus, menu bars, scrolling menus and pop-up menus. The pull-down menus of
a Graphical User Interface can also be hierarchical. The same issues discussed in the
design of menus in section 2.5 apply here as well

2.10 Pointers

A pointer is a symbol displayed on the screen that is controlled by a pointing device, such
as a mouse. It is used to point at objects and actions users want to select. The pointer
is the tool used to drive the GUI. Pointers are usually designed in the shape of an arrow
to point to different selections. Pointers can also change shape. This is done to provide
feedback to the user. For example, when a long operation is being performed, the pointer
changes to an hour-glass or stopwatch to indicate to the user that the application is still
functional but a specified operation will take some time to complete. When designing
an interface to incorporate shape changeable pointers, emphasis must be paid on the
shape of the pointer to suit the operation or mode the user is put into when the pointer
changes shape.

Figure 2.11 shows examples of mouse pointers:

Figure 2.11: Mouse pointers

© HERIOT-WATT UNIVERSITY

2.11. ALERTS AND WARNINGS 41

2.11 Alerts and Warnings

Alerts and warnings occur as pop-up windows that appear to notify the user of an event
that requires a response. The user can choose between overriding the event (cancel or
close) or by performing the required action.

Figure 2.12 shows an alert situation generated by closing an application. Figure 2.13
shows a warning produced by a notebook OS running on battery power:

Figure 2.12: A program alert (not serious)

Figure 2.13: A more serious system alert

2.12 Dialogue Boxes

A dialogue box is a fixed sized moveable window in which users provide information that
is required by an application so that it can perform a user request. Figure 2.14 illustrates
an example of a dialogue box during a find operation in a spreadsheet:

Figure 2.14: A dialogue box

© HERIOT-WATT UNIVERSITY

42 TOPIC 2. INTERFACE DESIGN

2.13 Review questions

Q4: Many computers nowadays offer a graphical user inteface such as Windows.

a) Mention two features of such interfaces that are likely to be useful to a novice user.

b) Outline three disadvantages of this type of interface.

Q5: Consider the interface of

1. an application you are familiar with on the computer you are using (for example a
word processor, or Web browser)

2. a mobile or cordless phone you use

3. a domestic or office appliance you use (microwave oven, photocopier, washing
machine, etc.)

List the components of the interface, including those which enable input of text, numbers,
or range-limited continuous or discrete parameter settings, and the parts which present
feedback to the user (screen, LCD indicators, sound generators, etc.) For each, indicate
which are the dominant interaction modes (visual, symbolic, speech, tactile, auditory,
etc.)

2.14 Processing Capabilities of Graphical User Interfaces

The graphical nature of graphical user interfaces gives it the ability to perform a variety
of different operations, including the combination of text and graphics that were never
possible before using one type of interface. Some of these operations are listed below.

• What You See Is What You Get (WYSIWYG) editing

• Image Scanning

• Processable Graphics

• Animation and Support for Multimedia

• Porting of documents or files across different applications

• Provision for users with disabilities

What You See Is What You Get (WYSIWYG) Editing

WYSIWYG editing refers to the representation of an image on screen as being an exact
image of the end result (as might be output on paper). This was previously possible but
only with text-based documents done on word processors. Graphical user interfaces
take WYSIWYG editing further since the interface screen can now provide reliable
images of text and graphic outputs.

Animation and Support for Multimedia

The manipulation of graphics to produce moving images is called animation. Animation
was originally found in game applications. However many businesses now use
animation for presentation and marketing purposes. Animation is also necessary for

© HERIOT-WATT UNIVERSITY

2.15. ADVANTAGES AND DISADVANTAGES OF GRAPHICAL USER INTERFACES 43

video conferencing which is used in some companies. A graphical user interface is also
the predominant interface for Web browsers since animations using Flash, Shockwave
and Java plug-ins are important for interactive activities.

Porting of documents or files across different applications

Sometimes it is necessary to use a file created in one application in another. In
the past this required explicit code to perform file conversions so that this can be
accomplished. This type of operation can be easily accomplished in a system with a
GUI interface. Since a GUI treats all files as objects, it makes it possible to embed
one object within another. When this is done, a link to the application that created
the embedded object is made. Therefore whenever the embedded object is to be
manipulated, the application that created that object is executed as a process separate
from the application maintaining the whole document.

Provision for users with disabilities

The WIMP environment is ideally suited for adjusting components for users with visual,
hearing and mobility disabilities. Special keyboards and mice can be adapted to use
the WIMP system. In terms of visual impairment, icons can be made larger and in
contrasting colours for easier use. Figure 2.15 shows normal icons and enhanced icons:

Figure 2.15: Normal and enhanced contrast icons

2.15 Advantages and Disadvantages of Graphical User
Interfaces

Overall, the advantages of GUIs are:

• Users feel in control of the computer and are not intimidated by it.

• Typical user learning time is short.

• Users get immediate feedback on their actions so mistakes can be detected and
corrected quickly.

• Icons help users to recognise what objects are meant to represent.

• Can facilitate the transfer of skills from one WIMP based operating system to
another. For example, using Windows 2000 on a PC is very similar to operating
the Mac OS 8 system. Although there may be small differences in symbols used
to represent icons or command names in menus, the dialogue between the user
and the system is essentially the same.

© HERIOT-WATT UNIVERSITY

44 TOPIC 2. INTERFACE DESIGN

The disadvantages of GUIs are:

• These interfaces are processor intensive and memory demanding which imposes
a high overhead on the system. Powerful and expensive processors are needed
to adequately support these interfaces.

• Sometimes a longer sequence of steps is necessary to perform certain operations
in a GUI than it is for another type of interface. This can be annoying for
experienced users of computers.

• Users with vision or motion disabilities may have trouble navigating in a GUI. In
some cases, special coloured filters can be used to partially alleviate this problem.

• Screens can be become cluttered and difficult to navigate.

All that said, GUIs today offer more functionality such as Plug and Play, increased
responsiveness, stability, multitasking and enhanced Web support.

2.16 Special purpose interfaces

With the ever increasing development of hardware and software, many specialised user
interfaces are now available. Table 2.2 summarises some areas of use:

Table 2.2: Special purpose interfaces

Interface Areas of Use
Touchscreens

Also found in PDAs, PC
Graphic tablets and
Interactive whiteboards.

Also found in some bank
ATMs

Museums Allows users to navigate
menu system of art works,
etc. by touching screen
with finger.

Photographic outlets. Customers can now
produce their own prints by
navigating the menu and
sub-menu printing system.

Travel centres Travel options can be
obtained by touching the
required icons on screen.

Speech Visually and physically
disabled users

Users can get audible
sounds and words from the
computer.

Natural language Speech input systems The most natural
interaction style. Speech
recognition software is
improving greatly but is still
not perfect.

© HERIOT-WATT UNIVERSITY

2.17. REVIEW QUESTION 45

For further references on GUIs you may wish to follow the links:

http://toastytech.com/guis/guitimeline.html

http://en.wikepedia.org/wiki/history-of-the-graphical-user-interface

2.17 Review question
Q6: Find examples of as many widgets as you can in two or three of the more common
software tools (browser, word processor, spreadsheet, etc.) on the computer you are
using. Is it obvious to you how to interact with these? Did you have difficulty guessing
their use and purpose the first time you encountered them?

2.18 Summary

In this topic various interface designs have been described and illustrated where
possible with suitable graphics and diagrams.

You should now be aware of the following objectives:

• the nature of interface designs including textual, menu driven and graphical;

• the relative merits of each in a computing environment.

End of topic test

Q7: What is meant by the term Human Computer Interface?

Q8: User interfaces have become more and more oriented towards the needs of users.
Give two aspects of interfaces to explain why this is so.

Q9: Some computer systems use a graphical user interface, while others use a
command-driven interface. Give one characteristic feature and one advantage of each
interface.

Q10: A menu system is much faster for the expert user.

a) True
b) False

© HERIOT-WATT UNIVERSITY

http://toastytech.com/guis/guitimeline.html
http://en.wikepedia.org/wiki/history-of-the-graphical-user-interface

46 TOPIC 2. INTERFACE DESIGN

Q11: Which one of the following statements is true:

a) The processing of graphics is faster using a GUI.
b) A WIMP environment allows for no errors being made.
c) Command-driven interfaces are no longer used.
d) None of the above.

Q12: Which one of the following statements is FALSE?

a) GUIs are processor intensive and screens can be cluttered.
b) Novice users find GUIs intimidating since there are too many options.
c) Sometimes a longer sequence of steps is necessary to perform certain operations

in a GUI than it is for another type of interface.
d) The learning curve for using a GUI is short.

Q13: Consider the following figure:

It is an example of:

a) A dialogue box with tiled windows.
b) An alert box with overlapping windows.
c) A menu system with overlapping windows.
d) None of the above.

© HERIOT-WATT UNIVERSITY

2.18. SUMMARY 47

Q14: Which of the following operating systems is the odd-one-out?

a) MS Dos

b) Windows XP

© HERIOT-WATT UNIVERSITY

48 TOPIC 2. INTERFACE DESIGN

c) Windows 98

d) Mac OS X

© HERIOT-WATT UNIVERSITY

49

Topic 3

Software development languages
and environments

Contents

3.1 Introduction . 51

3.2 Object-oriented languages . 51

3.3 Why object-oriented? . 51

3.4 Object-oriented concepts . 52

3.4.1 Objects . 52

3.4.2 Review questions . 55

3.4.3 Classes . 55

3.4.4 Inheritance . 56

3.4.5 Review questions . 57

3.4.6 Encapsulation . 58

3.4.7 Polymorphism . 59

3.4.8 Review questions . 60

3.5 Comparison of object-oriented with other language types 61

3.5.1 Procedural languages . 61

3.5.2 Declarative languages . 63

3.5.3 Review question . 66

3.5.4 Event-driven languages . 66

3.5.5 Low level languages . 69

3.5.6 Review questions . 70

3.6 Trends in programming language development 70

3.6.1 Machine code . 70

3.6.2 Assembly code . 71

3.6.3 High Level languages (HLLs) . 72

3.6.4 The computing explosion . 74

3.6.5 Review questions . 74

3.6.6 4GLs . 75

3.6.7 Beyond 4GL . 76

3.6.8 Review questions . 77

3.7 Summary . 77

50 TOPIC 3. SOFTWARE DEVELOPMENT LANGUAGES AND ENVIRONMENTS

Learning Objectives

After studying this topic, you should be able to:

• describe object-oriented languages;

• compare object-oriented with procedural, declarative, event-driven and low level
languages;

• explain trends in language development (low level to high level, 4th generation).

© HERIOT-WATT UNIVERSITY

3.1. INTRODUCTION 51

3.1 Introduction

This topic introduces the concepts behind object-oriented languages with a brief history
of their philosophy and development. They are then compared to the more conventional
programming languages such as procedural, declarative and event-driven paradigms.
Comparative features of low level languages are also covered in some detail.

Language development is a fairly dynamic process and this topic will examine the trends
from low level organisation to high level constructs, including 4th generation languages.

3.2 Object-oriented languages

The first object-oriented language called Simula 67 was developed in the 1960s by
Nygaard and Dahl of the Norwegian Computing Centre in Oslo during research into
event-driven systems in computer simulations. Simula 67 contained most of the
important concepts and techniques used in all present-day object-oriented languages.

Research progressed into the 1970s with the development of the language ’Smalltalk’
and the subsequent emergence of current languages such as C++, Visual Basic, Delphi,
Java and many others.

The popularity of such languages was enhanced by the increasing use of graphical user
interfaces (GUIs) and the development of windows applications. Today these are the
areas in which object-oriented techniques predominate.

3.3 Why object-oriented?

Conventional methods of programming invariably used imperative languages such as
Pascal, Basic, or C. The program would be written in terms of procedures, which would
process, or operate, on, the data passing through. This was still the von Neumann
approach to computing. Such programs were sequential, starting at the beginning of
the code and running to completion, branching and looping according to the program
instructions.

A fundamental flaw of this type of programming was that large programs became more
complex and tended to be unmanageable even allowing for the fact they were modular
and well designed. Also global variables could be accessed and possibly changed by
every part of the program during execution so results might not be valid. It was extremely
difficult to code program modules or procedures in isolation that might have referenced
global variables in the complete program.

Today computer programming is generally done in, and for, a windows environment.
Windows applications can contain millions of lines of source code and this can be
problematical in terms of project management. Not surprisingly this is an extremely
error-prone situation where possibly many thousands of modules have to be integrated
into a complete, working program. Even allowing for efficient top-down or bottom-up
development techniques, and the best will in the world, problems are bound to occur.
For example, should the project specification or a fragment of code be altered, this

© HERIOT-WATT UNIVERSITY

52 TOPIC 3. SOFTWARE DEVELOPMENT LANGUAGES AND ENVIRONMENTS

would have serious repercussions on the development schedule and probably incur a
complete re-write of a large chunk of the code.

Windows is an event driven environment and user interaction is required in the form of
a mouse click or a key press to represent the processing. Procedural languages do
not possess the necessary constructs to deal with this style of programming and are
generally unsuitable for building windows applications.

Object-oriented programming techniques overcome these difficulties and make it easier
for the programmer to implement good programming practices.

3.4 Object-oriented concepts

Object-oriented programming is a programming methodology, or paradigm, in that it
compels the programmer to think in a different way about software and its development.
Object-oriented programming enables the creation of software that can be more readily
understood and shared with others. Unlike more traditional programming methods
that are based on concepts such as data flow or some form of logic, object-oriented
programming directly models the program.

The object-oriented language model makes use of the following concepts:

1. Objects

2. Classes

3. Inheritance

4. Encapsulation

5. Polymorphism

3.4.1 Objects

As the name suggests object-oriented programming is a language model centred around
objects and, just as important, the data associated with them. An object is a logical unit
that contains both data and the code that manipulates it. The two are regarded as a
single unit, unlike the procedural viewpoint where data and code are separate.

This idea stems from the attempt to mirror object-oriented programming techniques with
attempting to solve real-life events employing everyday objects. You do not need to look
far to see examples of objects: a program, a bank statement, a tree, a cat, a car, a
computer, a house, a person are all examples of everyday objects.

Such objects share two characteristics. They have:

• a state (data)

• a behaviour (operations)

© HERIOT-WATT UNIVERSITY

3.4. OBJECT-ORIENTED CONCEPTS 53

Table 3.1 shows some examples:

Table 3.1: Object characteristics

Object State Behaviour

Dog Size, name, colour, breed Barking, playing, sniffing, hunting

Car Make, model, colour, engine size Accelerating, braking, reversing,
gear changing

Tree Species, shape, size, leaf colour Growing, swaying, rustling,
budding

For example, consider the desk in front of you. It has a location - you know where it is. It
has a certain size and colour (Figure 3.1). It cost a certain amount of money. However,
if we move the desk, then we change the location property. If we paint the desk we
change the colour property etc. When we change the attributes of the desk (location,
colour, size, cost) we do not change the fact that is it still a desk.

Figure 3.1: A large, brown desk and a small, blue desk.

In a similar fashion windows objects (command buttons, dialogue boxes, text boxes and
so on) also contain two parts:

• attributes (i.e. data)

• operations (also called methods).

A schematic view of an object is shown in Figure 3.2, where the set of attributes of the
object constitute its state.

© HERIOT-WATT UNIVERSITY

54 TOPIC 3. SOFTWARE DEVELOPMENT LANGUAGES AND ENVIRONMENTS

Figure 3.2: A Schematic View of an Object

Applying this representation to an everyday object such as a car and a GUI object such
as button the equivalence between them can be shown in Figure 3.3:

Figure 3.3: Objects

Objects on their own are, however, not very useful. Instead an object appears as a
component of a larger application that will contain many other objects. For example the
car object is just an assembly of metal and rubber sitting idle in a garage. By itself it
is incapable of any activity. The car becomes useful when another object (a person)
interacts with it and starts the engine.

Objects communicate with one another using messages and this will be discussed
further under the section on encapsulation.

Exercise

Compile a list as in Table 3.1 of four GUI objects with data and operations.

© HERIOT-WATT UNIVERSITY

3.4. OBJECT-ORIENTED CONCEPTS 55

3.4.2 Review questions

Q1: Give two reasons for the development of object-oriented languages.

Q2: For a language to be classified as object-oriented it must satisfy at least three
requirements. What are these requirements?

Q3: Explain what is meant by an object and how it is represented in an object-oriented
language.

Q4: State the attributes and operations for a Windows application icon.

3.4.3 Classes

Objects of the same kind share many characteristics. For example, a car is just one of
many cars; a cat is one of many types of cat and so on. Because of this, a blueprint or
template can be produced to accommodate all cars and one to contain all cats. Such a
blueprint is called a class.

Using object-oriented terminology, a car object is an instance of the class of objects
known as cars and a cat object is an instance of a class of objects known as cats.

Suppose there now exists a class called ’CAR’ that contains instances of types of car
such as four-wheel drive, saloon, hatchback and limousine. The class ’CAR’ would
become a super-class or base class and the various types become derived classes
or sub-classes.

Figure 3.4 illustrates the base class CAR:

Figure 3.4: Class diagram

In each case the sub-classes all have common features based on the super class.

Just as large programs are sub-divided into modules, much of the art of object-oriented
programming is determining the best way to divide a program into an economical set of
classes. In addition to speeding development time, suitable class construction results
in far fewer lines of code, which effectively means less errors and lower maintenance
costs.

Also object-oriented languages depend greatly on the concept of class libraries. These
are sets of classes that can be used by developers as common building blocks
for complex applications, rather akin to module libraries that are used in procedural
programming.

© HERIOT-WATT UNIVERSITY

56 TOPIC 3. SOFTWARE DEVELOPMENT LANGUAGES AND ENVIRONMENTS

Exercise

Extend the class diagram in Figure 3.4 to include two new sub-classes of:

• the class Hatchback

• the class Saloon

3.4.4 Inheritance

We have already seen that objects of the same kind share many characteristics and
belong to a specific class (type of car, species of cat etc.). It is possible to redefine a
new type of object from an existing class by adding additional features without modifying
the original class. In programming terms this opens up the possibility of reusing existing
code and is known as inheritance. Re-use of code is probably one of the most important
and strongest features of object-oriented languages.

Recall Figure 3.1 showing the two coloured desks. If we create a class called furniture
and describe it then the desk can be made a member of this class. We can also add
another class called table. In so doing both the desk and table will inherit all the attributes
and operations of the class furniture (shaded portions in Figure 3.5) with additional
features.

�����������
����

���������	

����

����
���
��
���
��	���
�����
��

����
����	

��
��		
��
��
��!�

�������
��"

���������	

����

����
���
��
���
��	���
�����
��

����
����	

��
��		
��
��
��!�

�������#�$	�

���������	

����

����
���
��
���
��	���
�����
��

����
����	

��
��		
��
��
��!�

������%���
�����������

&�	
�� '(�����$	�
�
)���	
��	���

��

��������
��
��������	�
��
����
����	

��������
��
��������	�
��
����
����	

Figure 3.5: Example of inherited Classes

As another example consider the class ’DOG’. This could be viewed as being a member
of the super class ’CANIS’ that contains other dog species, all possessing basic,
identical behaviour patterns.

© HERIOT-WATT UNIVERSITY

3.4. OBJECT-ORIENTED CONCEPTS 57

Figure 3.6 shows this as a hierarchy called an inheritance diagram:

�����

���� ��� ����
 �����

������� ��� �����

��
��� �
		�� ���� ����

Figure 3.6: Inheritance Diagram

Note the directions of the arrows in the diagram. This is part of the diagramming
’nomenclature’ for inheritance diagrams and effectively says that each sub-class belongs
to the classes above.

Exercise

In a payroll application, for example, a class Employee might be defined with data
such as Name, Address, National Insurance number, Date of birth. The application
represents each person on the payroll by an object of the Employee class. For a large
organisation, this might be extended to define a class Department and this would handle
a collection of Employee objects (an array, for example), and offer operations such as
listing the staff in the department and calculating the monthly pay bill. Each department
in the organisation would therefore be represented by an object of the class Department.

Construct an inheritance diagram showing all the classes and sub-classes referred to in
the payroll application.

This makes object-oriented programs easier to modify. Existing classes that have
properties similar to what is required in the new program can simply be reused.

Moreover, if an error is found and fixed in the super class, it is automatically fixed in all
derived classes!

This is significant when you consider that a large project, programmed using object-
oriented methods could contain dozens of inheritance levels and hundreds of derived
classes.

3.4.5 Review questions

Q5: Define the term class in an object-oriented language.

Q6: Suppose that there exists a class called BankAccount. List three possible data
items and three corresponding methods of this class.

© HERIOT-WATT UNIVERSITY

58 TOPIC 3. SOFTWARE DEVELOPMENT LANGUAGES AND ENVIRONMENTS

Q7: What is inheritance and why is it an important feature of object-oriented
programming?

Q8: Give three examples of object-oriented languages that you have come across in
your studies.

3.4.6 Encapsulation

You have already seen that an object contains data together with the operations that can
be applied to the data. In object-oriented programming, objects interact with each other
by use of messages.

The only aspect that an object knows about another object is the object’s interface. In
object-oriented programming an interface is quite an abstract idea. Just as a spoken
language is an interface between two people for them to communicate through, so then
is the interface of an object through which it communicates with other objects. In some
object-oriented languages an interface is simply regarded as a protocol or an interface
protocol.

This interface allows messages to pass between the object and the outside world.
Values can be sent in to an object (usually by parameter) and the object can send
values back (usually the return values of methods). See Figure 3.7:

�$*���

�

�$*���

�

������ +���
!��

������������

���%�������

Figure 3.7: Messages and interfacing of objects

Good design often means no direct access is allowed to an object’s data. As such the
data is protected from unregulated alteration. The content of an object’s methods is also
hidden: the outside world can use an object’s methods but cannot interfere with them.
This means that objects cannot change the internal state of other objects in unexpected
ways. This is called encapsulation or information hiding.

You may be wondering at this stage about all this concern regarding changes to the
software. We live in the real world and during program development changes do occur
to programming code, whether inadvertently or by need, resulting in lost development
time. All too often software developers tend to tweak their code by enhancing it here
and there in the hope that is will execute faster, for example.

There is a saying among programmers to the effect that "software is not written, it is
re-written!"

Through encapsulation developers can carry out the functionality of an object to their
applications and manipulate it through the object’s interface, but they are barred from
enhancing or changing the code or making it perform illegal operations.

© HERIOT-WATT UNIVERSITY

3.4. OBJECT-ORIENTED CONCEPTS 59

3.4.7 Polymorphism

Two or more classes derived from a base class are said to be polymorphic.
Polymorphism allows two or more objects to respond to the same message in different
ways. Objects derived from a base class will have similar characteristics but can also
have unique properties of their own as well.

An analogy of polymorphism to daily life is how students respond to a school bell. Every
student knows the significance of the bell. When the bell (message) rings, however, it
has its own meaning to different students (objects). Some students go home, some go
to the library, and some go to other classes. Every student responds to the bell, but how
they response to it might be different.

One of the classic examples in object-oriented programming is the ’shape example’.
Here there is a base class called Shape with derived classes called Circle, Square and
Triangle.

Figure 3.8 shows the inheritance diagram:

�����

���%
�����

�
��	�

���%
�����

�,����

���%
�����

��
���	�

���%
�����

Figure 3.8: Inheritance Diagram for class Shape

When the message ’draw’ is passed to each sub-class they will respond in different ways
according to their unique code. Here, the results will be a circle, square and triangle.

If we wished to add another shape such as a rectangle then the present inheritance
diagram can be extended to include the object rectangle complete with code.

© HERIOT-WATT UNIVERSITY

60 TOPIC 3. SOFTWARE DEVELOPMENT LANGUAGES AND ENVIRONMENTS

Conclusion

Although some of the concepts of object-oriented languages may seem difficult to grasp
at first sight, it is nevertheless important to realise that many benefits accrue in using
the techniques. The more important ones are:

• Classes allow the programmer to create new classes that are not already defined
in the language itself.

• The definition of a class is re-usable in other applications thereby reducing coding
time and development time.

• Encapsulation provides a way to protect the data from accidental corruption.

If you wish to read more on object-oriented programming then you might find the
following link to be useful:

http://www.eecs.utoledo.edu/~ledgard/oop/mainpage.html

3.4.8 Review questions

Q9: The following diagram is that of a class called VEHICLE:

-'.���'

'��
���
)�
'��
��# ��
+��/��$��

&�
���+��/��$��

Using the diagram explain what is meant by encapsulation.

Q10: What is meant by the terms message and interface in relation to objects?

Q11: Explain the term polymorphism and give an example.

© HERIOT-WATT UNIVERSITY

http://www.eecs.utoledo.edu/~ledgard/oop/mainpage.html

3.5. COMPARISON OF OBJECT-ORIENTED WITH OTHER LANGUAGE TYPES 61

3.5 Comparison of object-oriented with other language
types

Computer programming is concerned with the use of computers to solve problems.
Programming methods or paradigms represent different approaches both to the
computers and the problems they attempt to solve.

This part of the topic compares object-oriented methods to those of procedural,
declarative, event-driven and low level.

3.5.1 Procedural languages

In the procedural paradigm, the program is considered as a collection of blocks or
modules of code (in general, procedures) that serve to process collections of data.
Programs carry out their processing according to a defined sequence of events until
the program eventually terminates.

Similarities of object-oriented languages with procedural:

1. Object oriented languages have all the high-level control structures for iteration
and selection available to procedural languages.

2. Object oriented languages operate by changing the values of variables by using
assignment statements. In low level terms, they change the values in the locations
in memory that are set aside for data.

3. Both are problem specific languages.

Differences of object-oriented languages with procedural:

1. Object-oriented concepts might be difficult to learn by programmers with
procedural programming experience.

2. In procedural languages a program module is, generally speaking, a free standing
unit that can be compiled and executed on its own. In object-oriented languages,
a module is always part of a class hierarchy.

3. In object oriented programming, data and code are not regarded as separate.
Both are encapsulated into an object that consists of data and relevant operations
or methods (equivalent to procedures and functions). The difference is that these
methods belong to objects rather than to the program at large. If you develop an
object in one program and then make use of it in another, the object will bring its
methods with it.

As an example, consider a list of records.

In a procedural language, this would be declared as data, and modules would
be written to carry out operations on the list: create it, add records to it, remove
records from it, sort it, and search in it, and so on.

In an object-oriented language, these methods are part of the object: instead of
calling a procedure to sort the list, the list is told to sort itself.

© HERIOT-WATT UNIVERSITY

62 TOPIC 3. SOFTWARE DEVELOPMENT LANGUAGES AND ENVIRONMENTS

Table 3.2 and Figure 3.9 illustrate the differences:

Table 3.2: Procedural view of list

List Operations

Record 1

Record 2

Record 3

Record 4

.........

Record 99

Record 100

Create

Add record

Modify record

Delete record

Query list

Sort list

Print list

���#

/���
�
)�
��

������
���
����

�	���

Figure 3.9: List object

4. Assignment statements may look the same but their interpretation is different.

Consider the following assignments:

������� � �
������� � �
��� � ������� � �������

In a procedural language what this is saying is:

"Take the variable Number1 which has the value 5 and add to it the variable
Number2 which has the value 7, using the + operator. Place the result, 12 into
the variable called Sum."

In an object-orientated language the meaning would be:

"Take the object Number1, which has the value 5 and send it the message "+"
which includes the object Number2, which has the value 7. Perform the operation
and create a new object, Sum to contain the value 12."

5. If a program written in an imperative language like Pascal encounters a problem
and crashes then that is the end of the program. In an object-oriented language an
error occurs in the code for a specific object then only that object will be affected
and no others. The program will therefore continue to operate as normal.

Procedural and object-oriented languages are often grouped together under the heading
imperative. (Such terms are, of course, used by people, and people’s views will
differ: some prefer to regard imperative (procedural) and object-oriented languages as
distinct.).

Some imperative languages that have developed into an object-oriented environment
are listed in Table 3.3:

© HERIOT-WATT UNIVERSITY

3.5. COMPARISON OF OBJECT-ORIENTED WITH OTHER LANGUAGE TYPES 63

Table 3.3: Derived object-oriented languages

Imperative Object-oriented
derivative

C C++
Pascal Pascal++
Modula-2 Modula-3
Basic Visual basic

Exercise

List some other examples of present day object-oriented languages.

3.5.2 Declarative languages

The declarative paradigm treats the computer in an entirely different way. The computer
is treated not as a machine that processes data but as a machine that can perform logic
and produce answers. The programmer is concerned to declare the form of the result
to be achieved, rather than to tell the computer how to achieve it.

In imperative languages, the programmer sets out sequences of steps for the program to
follow. In declarative languages, the programmer declares relationships between items,
in the hope that the system will produce a result.

Most declarative programming is carried out in one version or another of a language
called Prolog (short for programming in logic).

A typical program consists of a database and a set of rules. The items in the database
are known as facts. The general term for facts and rules is clauses. A fact consists of
a single assertion with no conditions: a fact is always true. A rule consists of a goal,
whose truth is dependent upon a set of conditions or sub-goals. The goal of a rule is
referred to as its head and the sub-goals as its body. The database and the rules are
submitted to a program known as the interpreter. The programmer sets goals, and the
interpreter, following the given rules, seeks for these goals in the database.

Figure 3.10 illustrates this process.

���$���&+���0
�����������

1����
��

���%��

Figure 3.10: Declarative environment

Consider the information in Code 3.1 relating to the planets that has been asserted into
the Prolog database. The 3rd arguement relates to distance in millions of miles the
planet is from the Sun and the last number represents the number of moons the planet

© HERIOT-WATT UNIVERSITY

64 TOPIC 3. SOFTWARE DEVELOPMENT LANGUAGES AND ENVIRONMENTS

has.

�
���� ������!
��"�!#$$!������%���!���"�!�#&�
�
���� ����%!���

!#�!������%���!����!�&�
�
���� ���'��
!���

!(�!����!����!����&�
�
���� �
���!���

!(�$$!������%���!����!�&�
�
����)����!���

!*+!������%���!����!����&�
�
���� ����!���

!�,$!������%���!����!�&�
�
���� ������!
��"�!�+$$!������%���!���"�!��&�
�
���� -������!
��"�!���!������%���!���"�!��&�
�
���� �������!
��"�!�+$$!������%���!���"�!+&�

Code 3.1: Planets database

We will now use the database to answer the following queries:

a) Find all planets with no atmosphere.

The structure of the query is

./ �
���� 0
����!�!�!����!�!�&�

Here we are asking the database to return the names of all the planets that match
the 4th responce as ’none’. Variables of no interest to the query are represented
by the underscore character and this is referred to as the anonymous variable.
Note the variable ’Planet’ is capitalised and this means that a value for that variable
will appear in the result.

The query returns the only planet with no atmosphere - Mercury.

0
���� � 	��'��

��
./

b) Find all planets with rings and moons.

./ �
����� 0
�����!�!�!�!���"�!	����&!	����1$ � 2���� 3���
 �� 0��
�" �

�
���� � ������ � 0��
�" ������ �
�
���� � ������
�
���� � -������
�
���� � �������
4��
./

Exercise

Using the planets database in Code 3.1, write queries to:

1. find all planets that are greater than 100 million miles from the Sun.

2. find all planets that are small, have an atmosphere, no rings and contain moons.

© HERIOT-WATT UNIVERSITY

3.5. COMPARISON OF OBJECT-ORIENTED WITH OTHER LANGUAGE TYPES 65

Similarity of object-oriented languages with declarative:

1. Because Prolog always operates on a database there is a mechanism built into
it for searching the database. A tenuous similarity could be the case with object-
oriented languages where the searching process is part of the object

Differences of object-oriented languages with declarative:

1. Declarative languages have none of the rigid control structures such as loops
(5��������, 6%�
�, ������), 25��7%�� conditions.

2. All data structures in declarative languages are dynamic meaning that they only
exist at run time. This makes the database more effective in dealing with the
assertion and querying of rules and facts. Much use is made of the dynamic data
structure called a stack (see Topic 6) to store current situations of goals and sub
goals during recursive searches.

3. Declarative languages make use of type free variables that can represent widely
different data structures. This allows any variable in a clause to represent a
number, a string, a list of numbers, a list of strings, a list of strings and numbers,
etc.

4. Variables can be reassigned in object-oriented languages but not in declarative. In
Prolog, for example, once a variable has been given a value it is unchangeable.

5. The scope of a variable is within the rule it occurs in. There are no global variables
in declarative languages.

6. An assignment is an instruction to the computer to give a variable a value. In a
declarative language this is called instantiation. Whereas, the same word in oo
implies creating a new object.

Recall the small program to add two numbers and store the result in the variable sum?
In a declarative language, like Prolog this would become as shown in Code 3.2:

./������� � �! ������� � �! ��� �� ������� � ��������
������� � �
������� � �
��� � ��
./4��

Code 3.2: Prolog code

Notice the syntax in the first line. In the 4th line the variable Sum is instantiated to the
value 12.

The language Prolog was extended in 1994 to Prolog++ to include a fully functioning,
object-oriented environment.

For example, the following statements, shown in Code 3.3, relate to two dynamic data
structures, the stack and the queue and are from Prolog++:

© HERIOT-WATT UNIVERSITY

66 TOPIC 3. SOFTWARE DEVELOPMENT LANGUAGES AND ENVIRONMENTS

'
��� ���'8�
��%����� ������ 9 ��%����� �

 '%���'�������'� �� �������
���

��: ���'8�

'
��� 3�����
��%����� 3����! 9 ��%����� ���� "�����
 3�����
���

��: 3�����

Code 3.3: Prolog++ code

Further reading

Should you wish to find further information on Prolog++ the following text is
recommended:

Prolog++: The Power of Object-Oriented and Logic Programming, by Chris Moss.
Published by Addison-Wesley, 1994

3.5.3 Review question

Q12: The following statement is from an article by Tim Rentsch, Professor of computer
science at the University of Southern California:

"...Object oriented programming will be in the 1980’s what structured programming was
in the 1970’s. Everyone will be in favour of it. Every manufacturer will promote his
products as supporting it. Every manager will pay lip service to it. Every programmer
will practice it (differently). And no one will know just what it is.”

From your knowledge of object-oriented languages explain whether you agree or
disagree with the statement.

3.5.4 Event-driven languages

Historically, event driven programs dealt with such areas as embedded systems and
control systems where input was usually through various types of sensors. Support for
event driven programming was invariably grafted on to existing languages at the time to
extend their functionality to deal with this environment.

With the ever increasing use of graphical user interfaces (GUIs) in computers today,
new event-driven languages such as Visual Basic have emerged to accommodate the
new style of programming. Also since GUIs such as MS Windows and Apple Mac OS
are object based then object-oriented techniques feature heavily in this environment
and these will be discussed later. In fact the early applications of object oriented
programming were focussed on event driven systems.

As you are probably aware, conventional programming techniques are less suitable for
the management of GUIs since there are no sequences of instructions to execute nor
are there predefined pathways in the execution of the code. There are no start or finish
phases either to program execution. In event driven environments the user executes
what is known as an event procedure such as clicking a mouse or hitting a key to run
part of the code.

Event driven programming is also referred to as asynchronous programming since

© HERIOT-WATT UNIVERSITY

3.5. COMPARISON OF OBJECT-ORIENTED WITH OTHER LANGUAGE TYPES 67

the computer waits for events to occur and responds to them as they happen. Such
input events would include:

• keyboard events - key up, key down

• mouse events - mouse up, mouse down

• window events - window resized, window dragged

An event driven ’program’ consists of a number of smaller units or procedures that
respond individually to events, triggered by the user. These procedures are called
event handlers and are executed by a special program called a dispatcher, which
is part of the operating system, as shown in Figure 3.11:

'!��� '!���

��������

'!��������	���2

'!��������	���3

'!��������	���4

'!��������	���5

Figure 3.11: Control of events

The event dispatcher is called whenever an event is triggered. The dispatcher then
forwards control of the event over to the appropriate event handler procedure.

Each event has a unique event handler. It is customary to associate each handler with
two concatenated names to reflect the type of object and its action.

© HERIOT-WATT UNIVERSITY

68 TOPIC 3. SOFTWARE DEVELOPMENT LANGUAGES AND ENVIRONMENTS

Table 3.4 shows some examples:

Table 3.4: Examples of event handlers

Event type Handler required

Mouse mousePressed

mouseReleased

mouseClicked

mouseExited

mouseEntered
Mouse motion mouseDragged

mouseMoved

The event dispatcher can be regarded as a large programming loop that waits for an
event to occur, much in the same way as the operating system might wait for an interrupt
to happen, through a polling system, for instance, and then respond accordingly.

Should an event be triggered while others are being processed then it is put into an
event queue. All pending events in the queue will be dealt with, in order, only when all
current events have been processed.

The following code fragment is represented in Code 3.4:

;%�
� ���� <<
��� ����)�� ����
 �����%��" �''���
;%�
� ����
 �)����3����&&= << ;��� ��� �� �)��� �� %�����
�)��� � ��� �)����3����&= <<
��8 �� ����� ���� �� 3����
�)��� � �
�� �)���������������&= << ���'��� �)��� ����" ����������� �)���

%��:
��

Code 3.4: Event dispatcher loop

As previously mentioned object oriented programming techniques are evident in GUIs
and work in harmony with event driven procedures. Languages like C++, Java and
Visual Basic support the main constructs such as objects, classes and methods.

Objects that can be sources of events in a GUI include buttons, fields, scroll bars,
graphics, check boxes, text areas, labels, frames etc.

It is quite difficult to distinguish between object-oriented and event driven programs.
Quite a few languages can be categorised as being both! Visual Basic, for example is
classified as an event driven language but it also supports object-oriented concepts. It
is safe to say that all object-oriented languages are also event driven.

Summary

1. Event driven programs do not have a set sequence of instructions to execute.

2. Event programming and object oriented programming are inextricably linked in GUI
systems.

3. Languages like Java and Visual Basic provide support for event-driven
programming through the use of objects, classes and methods.

© HERIOT-WATT UNIVERSITY

3.5. COMPARISON OF OBJECT-ORIENTED WITH OTHER LANGUAGE TYPES 69

4. Inputs to event-driven programs come from event sources that require individual
event handlers to process them. Some rules usually need to be set about which
event has priority if multiple events are triggered at the same time.

3.5.5 Low level languages

At low level the focus is more on the computer rather than the problem to be solved.
There is only one programming language that any computer can understand and
execute and that is its own native binary machine code. This is the lowest possible
level of language in which it is possible to write a computer program, consisting entirely
of strings of binary 0s and 1s.

An enhancement to binary code was assembly code that used simple mnemonics to
represent the various actions: load, add, sub, jump etc. but these varied from machine
to machine as each had a different instruction set related to a specific processor. This
defined what actions a computer could perform or not.

Both machine code and assembly code are machine dependent and are referred to as
machine-oriented languages. Both require a detailed knowledge of every aspect of
the computer’s architecture, processor instruction set, registers, addressing modes, I/O
details, memory layout and much more.

The programmer’s intention, in choosing to work with low-level languages, is to write
programs that run very fast and make efficient use of the computer’s resources. Such
example would include cases where the speed of a program (screen displays, device
drivers) or the efficiency of its use of computer resources (memory), is of primary
importance. A well written assembly program can optimise for speed and memory usage
much more effectively than that of high level compilers.

Programmers in this paradigm have no high-level features available to them, either for
program structure or for data structure, and have to do everything for themselves. An
idea that is nowadays strongly stressed is that code should be easy to read. Low level
programs are by no means easy to read and, as a result, maintaining and adapting them
can be extremely difficult.

Summary

Low level languages:

1. Are machine dependent

2. Are difficult to program and debug

3. Are not compiled nor interpreted

4. Demand a large expense of time on the part of the programmer

5. Contain no high level constructs

6. Execute extremely fast

7. Produce lines of code that have a 1:1 relationship with machine instructions

© HERIOT-WATT UNIVERSITY

70 TOPIC 3. SOFTWARE DEVELOPMENT LANGUAGES AND ENVIRONMENTS

3.5.6 Review questions

Q13: There is much more of a direct association of object-oriented procedures with
event-driven languages in today’s computing environments. Discuss.

Q14: In low level languages the main centre of attention is the computer itself. Give
three reasons why this is the case.

Q15: In spite of this, low level programming is still used in today’s computing
environments. Give two areas where this might be the case.

3.6 Trends in programming language development

Before the existence of high level programming languages as we know them today,
computers were programmed one instruction at a time using binary, octal or hexadecimal
code. This was a dull, monotonous task with lots of errors being created in the process.
The only people who could work in this code were mainframe engineers. Software
development at this time was extremely expensive often costing many times as much as
the computer itself. This led to the development of assemblers and assembly languages
that made programming somewhat easier but this was still the domain of computer
specialists.

Later, with the widespread use of computers, individuals wished to solve larger
application problems. Assembly and low-level methods were rather inadequate in the
resources they offered the programmer; it was difficult to describe a problem in terms
of the operations required by the computer to solve the problem within such a mundane
framework.

As a result a number of ‘high-level’ programming languages began to appear from the
mid 1950s onwards, each supporting facilities and control structures for specific fields
of application. Since the required resources were not supported in hardware, high level
languages had to be developed to support them.

The trends in computer languages development can be viewed from various
perspectives:

1. As a series of discrete generations, although there is some dispute as what
regards the various generations.

2. As a chronological progression or timeline of events.

3. When a computing event initiates some sort of change that dictates future
strategies.

Options 2 and 3 form the basis of the following discussion.

3.6.1 Machine code

The first code used to program a computer was called machine language or machine
code. Machine code could also be called the oldest programming language dating back
in the early 1950s, when it was the only means of programming available.

© HERIOT-WATT UNIVERSITY

3.6. TRENDS IN PROGRAMMING LANGUAGE DEVELOPMENT 71

Machine instructions were in binary form consisting of opcodes, short for operation
codes and addresses.

A 16 bit instruction may have the following structure depending on the machine
architecture:

$ $ $ � $ $ $ � $ $ � � $ $ $ �
$ $ � � � � $ $ � $ � � � $ � $
� $ � $ $ � � $ $ � $ $ � � � $

>� ��:� ?::����

While they actually ran very fast, low level programs demanded a large expenditure of
time on the part of the programmer. The main problems associated with machine code
programming were:

• Programs would only run on specific machine architectures and would not transfer
to machines whose architecture differed in any significant way.

• Low level programs were by no means easy to read and, as a result, maintaining
and adapting them was extremely difficult. For example, to insert a new instruction
at a certain point, all the existing instructions needed to be moved down in memory
to make room for it. This in turn meant that the addresses of jump instructions
needed by selection or repetition constructs also required to be adjusted.

• Programmers found it difficult to remember the opcodes and looking them up in
the system manual was a tedious task.

3.6.2 Assembly code

Assembly language programming addressed the problem of programmers remembering
all the opcodes and addresses of machine level programming by using symbolic code.
The symbols represented a mnemonic that corresponded to the type of operation
involved such as ADD, MOV, JMP, etc.

Assembly language was arguably the forerunner of all programming languages in that
it was the first tool that relieved programmers from dealing with 0s and 1s and enabled
them to use meaningful names for instructions.

A typical assembly program to add two numbers might look like:

@A? B C
��: �%�)�
�� �� �%� B ��"����� �� �%� ? ��"�����
?AA 4 C�:: �%�)�
�� �� �%� 4 ��"����� �� �%� '������� �� �%� ?

��"�����
�7? D C����� �%� ����
� �� �%� D ��"�����

This made writing and debugging programs a good deal easier.

However there was an extra overhead in that the mnemonics had to be translated into
native machine code before the processor could carry out the instructions. This was
achieved using an assembler. An assembler is itself a program and, as it is designed
to produce machine code, must be written by a machine language programmer.

© HERIOT-WATT UNIVERSITY

72 TOPIC 3. SOFTWARE DEVELOPMENT LANGUAGES AND ENVIRONMENTS

Like machine code programs, well-written assembly language programs have fast
execution times and make efficient use of computer resources; each assembly code
statement has a 1:1 relationship with the machine language statement.

Assembly language programs are a good deal easier to write, debug, and maintain than
machine code programs.

However, assembly language programming still takes time. Given a certain specification,
a programmer can easily take ten or more times as long to write an appropriate program
in assembly level language, compared with one of the higher level languages that are
now available.

Because programming time is now the most expensive factor in software development,
assembly level programming is not greatly encouraged for general purposes. One
exception is in cases where the speed of a program or the efficiency of its use of
computer resources is of the first importance. Assembly language is therefore still used
today in embedded systems and device drivers where there might not be much memory
available and where the programmer has to make the best possible use of the given
architecture.

Assembly languages developed further into the 1960s with systems that incorporated
single lines of code that were translated into many lines of machine code. These
programs were called macro generators and the most prominent of this type and also
the most popular was the IBM 360 system that lasted for many years.

For further reading the following link gives an excellent discussion of low level languages:

http://www.dacya.ucm.es/luis/docencia/aetc/tae/c001p01.htm

3.6.3 High Level languages (HLLs)

With machine code and assembler languages operations being defined by the hardware,
it soon became apparent that language development should now include operations
more suited to the application program instead. The lack of portability between different
machines was a deciding factor in stimulating the development of HLLs. Also, if
assembly code could be translated into machine code then why not English?

Computer scientists and engineers discovered that computers were quickly becoming
more popular worldwide. There was now an immediate need for more powerful
computing languages than were currently available using assembly code.

The early 1960s thus witnessed the evolution of several high level, imperative
languages, each designed for a specific area of use. These programs were block-
structured (procedures) and the lines of code resembled English sentences and
mathematical expressions so were much easier to read and debug. In fact COBOL was
designed to be easier to read than assembly code. Each line of high level code now
translated to roughly ten to twenty lines of low level code thus allowing programmers
more flexibility in constructing programs.

For example, COBOL statements would look like:

0E�5>�	 6?FE/�?@�G@?72>� G�72@ E�A/>5/52@E�

A2H2AE 7>7?@ I4 �G	IE� F2H2�F �E	?2�AE� �E�2AGE�

© HERIOT-WATT UNIVERSITY

http://www.dacya.ucm.es/luis/docencia/aetc/tae/c001p01.htm

3.6. TRENDS IN PROGRAMMING LANGUAGE DEVELOPMENT 73

Table 3.5 summarises the features of the four most influential languages of their time,
three of which have undergone modification and are still in use today, as we’ll soon see:

Table 3.5: Early development of HLLs

Language Developed by Applications Features

ALGOL Algol 60
Committee

Universal 1st ’universal’ language used to
describe algorithms.

Close to standard mathematics
notation

Block structured

Portable across machine
architectures

Compilable to machine code.

FORTRAN John Backus Numerical Programs more readable

Easier to train new programmers

Reasonably fast development
time

COBOL Grace Hopper Business and
commerce

Programming in ’natural’ English

Programs very readable

File handling procedures

Programmers required
specialised training to write in
COBOL

LISP John McCarthy List processing and
AI systems

Common data structure for data
and programs

Uses recursive techniques

Early proposals for high level languages were said to be controversial. Critics said that
they would yield programs with unacceptably slow execution times since they would
have to be translated to machine code using compilers, which were fairly complex
programs in their own right, but supporters argued that a significant reduction in coding
and debugging time would result.

Both statements turned out to be true! In the case of FORTRAN the slow compilation
speed was offset by the reduced time to program the application.

The use of languages such as ALGOL started the programming revolution and offered
programmers many advantages including:

• The use of statements and keywords using English words

• Access to high level control structures, such as selection and iteration

• The use of high level data structures, such as arrays, records and files

• The capability of defining types and dynamic data structures such as stacks and

© HERIOT-WATT UNIVERSITY

74 TOPIC 3. SOFTWARE DEVELOPMENT LANGUAGES AND ENVIRONMENTS

queues.

Programming at this time (1960s/70s) was mainly in the realm of scientists and
engineers but this was to change dramatically.

3.6.4 The computing explosion

Progression through the 1960s and into the 1970s witnessed a dramatic increase in the
number of programming languages being developed, estimated to be in the hundreds.
There now seemed to be a need to write easier and faster error-free programs in areas
other than that of science or engineering.

In education the language BASIC was developed to train students in programming while
the language Pascal appeared later as a derivation of ALGOL.

The influential language ’C’ developed by Dennis Richie at the Bell Laboratories in
America emerged from the UNIX operating system and it is still an important teaching
language today in many of its different guises.

Languages like COBOL, FORTRAN and LISP were metamorphisised into more powerful
variants to keep them competitive in the current markets and also to take into account
faster processing techniques and enhanced computer architectures. They did however
offer backwards compatibility with their earlier versions to accommodate the use of
legacy code.

Other notable factors were:

• Compiler techniques were becoming more refined so larger and more complex
programs could be translated.

• Escalation of new hardware technologies (e.g. networking, cheaper memory)

• Expansion of specialised software applications (graphics, word processing,
spreadsheets).

In some cases existing languages were enhanced with so many features that they
became so complex and unwieldy to use. ’Language bloat’ became a common
feature of the times. However it was argued that the complexity of a language was
directly proportional to the increasing complexity of the problems they had to solve.
Consequently programs tended to run with reduced efficiency but with decreasing costs
and increasing speeds of hardware meant this was well tolerated at the time.

By the end of this extremely productive era programming languages existed in
every sphere of activity: business, commerce, industry, scientific, teaching, artificial
intelligence, simulations, graphics, translation, etc.

3.6.5 Review questions

Q16: The high level language FORTRAN was created in 1954 and it is still in use today.
Give four reasons why you think this is the case.

Q17: What other early high level languages do you think were influential in shaping
trends in programming? Name the fields for which they were developed.

© HERIOT-WATT UNIVERSITY

3.6. TRENDS IN PROGRAMMING LANGUAGE DEVELOPMENT 75

3.6.6 4GLs

Throughout the 1970s hardware technology evolved with relentless haste. Application
software dominated the scene and methods of manipulating the data within and between
applications were not conducive to imperative language techniques.

The first 4GL language was Forth, developed in 1970 for use in scientific and
industrial control systems. 4GLs were typically developed to meet the special needs
of data processing, with such applications as databases, spreadsheets and graphics
applications. They were non-procedural and designed in such a way that users could
specify the nature of the problem in a simple manner without having to understand the
computer processing involved.

A typical database command in 4GL would take the form

52�A ?@@ �E�>�A� 6JE�E �?	E 2� K�	27JK

and the database would be queried until either a match was found or not found.

If, on the other hand, a list of values had to be arranged in numerical order, it is evidently
much easier to use the command ’SORT’ from the application rather than writing the
code in an imperative language to achieve the same objective. In a spreadsheet, for
example, Table 3.6 shows how a list of marks can be sorted in ascending or descending
order by clicking on the appropriate icon as shown in Figure 3.12

Table 3.6: Sorting of spreadsheet marks

Name Mark
Thomson Peter 93
Gerrard Tom 90
Jones Robert 89
Phillips James 71

Best Jenny 67

Calder Ben 66
Jenkins Rosie 55

Smith Wendy 51

Beatty Colin 50

Smart Mary 45

Figure 3.12: Ascending and
descending sort button

Most 4GLs were written for specific purposes and incorporated the following features:

• database application tools (dBase, PARADOX, ACCESS macros)

• end-user tools like query languages (SQL (structured query languages),
Postscript)

• report generators (RPG);

• application generators, sometimes referred to as RAD (Rapid-application
development)

4GLs have evolved into such languages as Visual Basic for Applications (VBA) and are

© HERIOT-WATT UNIVERSITY

76 TOPIC 3. SOFTWARE DEVELOPMENT LANGUAGES AND ENVIRONMENTS

responsible for many of the powerful in-built features that can be accessed from a menu
or by clicking on an icon in present-day GUI systems.

3.6.7 Beyond 4GL

The terms 4GL and now 5GL are deemed to be rather imprecise terms but nevertheless
they are used in the literature to define stages in computer language development. In
essence no one really knows what comes after 4GL but we can see for ourselves the
languages that are in use today.

Considering 5GLs there are various threads that exist:

• they are natural language systems involved in artificial intelligence and expert
systems;

• 5GL is programming that uses a visual or graphical interface to create source code
that can be compiled using a conventional high level language compiler;

• they encompass event driven, object-oriented programming and GUIs.

In the 1980s vast efforts were being put towards two large projects in artificial
intelligence, namely:

1. the ADA language development in America and

2. Prolog development - the Japanese "Fifth Generation" Computer Project

It was thought that these two languages would dominate programming language
development well into the 21st century. This is partly true but other developments took
centre stage.

With the advent of GUIs:

• event driven, visual programming languages (Visual C, Visual Basic, Visual
FoxPro) emerged to take advantage of these powerful interfaces;

• object-oriented languages (C++, Turbo Pascal, Java, Visual COBOL) also
flourished under GUI environments.

Also with the rapid use of the Internet and the WWW, web-based languages were
developed to enhance existing software or as languages in their own right. These
include scripting languages (JavaScript, VBScript) and markup languages (HTML, XML)
and many more.

It is interesting to note at this stage what the criteria might be for making a language
popular. In a paper by R.P Gabriel "The end of history and last programming language"
he makes the following main points:

• The language should be available to run on a wide variety of hardware

• It should be easy to learn

• It should be simple to implement

© HERIOT-WATT UNIVERSITY

3.7. SUMMARY 77

• Require modest computer resources

• Its code should be efficient at running any program of varying complexity

Does such a language exist?

Programming languages have developed greatly over the past 45 years and have been
influenced by many factors throughout that time. Initially the need was to get away from
machine dependent programming and to make languages more portable. Economic
factors saw the costs of hardware becoming cheaper and more powerful and this
heralded an upsurge in language production, notably procedural, for specialised areas.
As compiler techniques improved more complex problems could be coded and solved
in shorter times, this led to declarative and object-oriented paradigms being produced.
Languages then became application centred and were supported by 4GLs. With the
advent of GUIs, existing languages were revised and new languages developed such as
event driven and scripting systems.

3.6.8 Review questions

Q18: What is meant by the term 4th generation language (4GL) and how did they come
about?

Q19: What, in your opinion is meant by 5GL?

Q20: A software developer chooses to use an object-oriented approach with the aid of
a visual programming language. Describe two advantages which their use might have
over the use of a traditional, procedural language

3.7 Summary

This fairly extensive topic has described the nature of object-oriented languages and
the structures and concepts involved in their use. Object-oriented languages are then
compared to other language types with relevant summaries included. The trends in
programming language development are discussed and brought up to date with 4GLs
and beyond.

By the end of this topic you should now be aware of the following objectives:

• an awareness of the concepts involved in object-oriented programming and some
of the OOP languages that are in use today;

• an appreciation of the differences between object-oriented languages and other
programming paradigms, in particular imperative, declarative, event-driven and
low level systems;

• be aware of the trends in programming languages development should be
recognised as a timeline from the early 1950s to the present day.

© HERIOT-WATT UNIVERSITY

78 TOPIC 3. SOFTWARE DEVELOPMENT LANGUAGES AND ENVIRONMENTS

End of topic test

Q21: In object-oriented programming what concept allows objects of a derived class to
have the same characteristics of its associated base class?

Q22: A programmer chooses to use an object-oriented approach, using a visual
programming language. State what is meant by the terms in bold.

Q23: Give one advantage of using an object-orientated approach and one advantage
of using a visual programming approach.

Q24: Which one of the following statements is false?

a) A translator converts source code into an object code
b) A different compiler is required for each high level language
c) An assembler converts assembly language mnemonics into binary
d) A machine code program can be executed by any CPU

Q25: Name two programming languages that can handle events.

Q26: Give two reasons for the abundance of programming languages today.

Q27: Considering 4GLs,which one of the following statements best describes them?

a) They were developed to meets the needs of data processing
b) They are non-procedural
c) They lie behind many applications
d) All of the above

Q28: 5GLs have taken over from 4GLs to allow programming using object-oriented
concepts.

a) True
b) False

© HERIOT-WATT UNIVERSITY

79

Topic 4

Software Testing and Tools

Contents

4.1 Software testing in more detail . 80

4.1.1 Test strategies . 80

4.1.2 Component testing . 81

4.1.3 Module testing . 82

4.1.4 Alpha testing . 83

4.1.5 Beta (acceptance) testing . 84

4.1.6 Review questions . 85

4.2 Debugging methods . 85

4.2.1 Dry run . 86

4.2.2 Trace tools . 88

4.2.3 Program Watch . 89

4.2.4 Breakpoints . 91

4.2.5 Review questions . 91

4.3 CASE tools . 92

4.3.1 Development of CASE tools . 93

4.3.2 Categories of CASE tools . 93

4.3.3 Upper (Front-End) CASE tools . 94

4.3.4 Lower (Back-End) CASE tools . 95

4.3.5 Object-Oriented CASE . 96

4.3.6 Advantages of CASE Tools . 97

4.3.7 Limitations of Case tools . 98

4.3.8 Review questions . 99

4.4 Summary . 99

Learning Objectives

After studying this topic, you should be able to:

• explain module, component and beta(acceptance testing);

• describe debugging techniques: dry runs, trace tables (tools), break points;

• describe the use and advantages of Computer-Aided Software Engineering
(CASE) tools.

80 TOPIC 4. SOFTWARE TESTING AND TOOLS

This topic takes an in-depth look at large software system testing procedures before
the finished project is deployed commercially. This is followed by a review of debugging
techniques that might be used by all types of programmer when testing their software.
Finally a description of the uses of CASE tools is investigated together with their relative
advantages and disadvantages

4.1 Software testing in more detail

Software testing involves a series of processes in order to verify that:

• the finished software product meets the original specification.

• the software is robust.

• the software is reliable.

Testing can only find errors or bugs in a program, not prove that there are none!

There is the story about Thomas Edison of light bulb fame. After a thousand failed
attempts at making an electric light, he said he was making progress because he now
knew 1000 ways of how not to make an electric light! Testing can be bit like this.

Testing should be systematic. It’s certainly not enough to run the program, insert a few
values and see what happens. For large commercial systems that might use expensive,
exhaustive testing methods, errors will still be found.

Test data also needs to be planned, and the testing process needs to be continually
recorded in a test log. A typical test log might consist of these four items:

• input

• reason (for choosing that input)

• expected output (expectations being formed on the basis of the specification)

• actual output

The actual test data that is selected will depend on the testing strategy that is adopted.

4.1.1 Test strategies

The purpose of test data is to determine that the system behaves as expected. Tests
may be used for different purposes. These include:

• module testing, on all components of the system;

• integration testing, where the components function as a single entity;

• system testing or black box testing;

• acceptance testing or beta testing, ensures that the system is ready for operational
use.

© HERIOT-WATT UNIVERSITY

4.1. SOFTWARE TESTING IN MORE DETAIL 81

Software testing is a complex and expensive issue. There are a number of different
testing approaches that are used ranging from the most informal ad hoc testing, to
formally specified and controlled methods. The following table contains some of the
many generally accepted classifications amongst the many that exist and the ones that
we are interested in at this stage are highlighted in Table 4.1 :

Table 4.1: Scope of testing procedures

By scope By purpose By life-cycle phase

Component testing Correctness testing Requirements testing

Module testing Performance testing Design testing

Integration testing Reliability testing Acceptance testing

System testing Security testing Maintenance testing

Testing ’By Scope" starts at component level then proceeds through subsequent testing
phases, each one more complex than the previous, until the final system is tested as a
whole.

Testing "By purpose" entails the whole reason for testing in the first place, namely that
the finished program is correct and runs to the original specification.

Finally testing by "Life-cycle phase" includes the final software development test of all,
namely acceptance testing when the software is deemed to fit for purpose and sold to
the client as a viable product.

4.1.2 Component testing

Components, sometimes referred to as units, are the building blocks of software
applications and the first rung of the testing "by scope" ladder. They are defined as
pieces of software code such as subroutines, procedures or functions that can be
compiled and executed on their own. Usually a component will be the work of a single
programmer who will also be in good position to test the code and ensure it functions
correctly. Hence the testing of a component will usually be at a fairly basic level and use
white box testing techniques.

White box testing, also referred to a glass box testing or structural testing is so called
since the actual component code is seen and it is the workings of this code that are
tested. Programmers often use white box testing as they proceed with the program to
ensure that it is working as it should under test cases.

The component can be tested in static mode or dynamic mode. In static mode the
component does not require to be executed. Instead a detailed catalogue of reviews
and inspections is compiled for each module detailing program information. The more
rigorous of the two modes are the inspections that contain a precise framework for
rigorously checking both component documentation and code. Using this method
supporters claim dramatic decreases in the errors found in the final software system.

These methods are sometimes referred to as Fagan inspections, named after the
programmer who introduced them while employed with IBM.

In dynamic testing the component program is executed using test values for the usual
normal, boundary and exceptional cases.

© HERIOT-WATT UNIVERSITY

82 TOPIC 4. SOFTWARE TESTING AND TOOLS

Once a component has been thoroughly tested and is working to specification it may be
combined with other working components to form modules and the process is repeated
until a complete software system has been created.

4.1.3 Module testing

Modules are a collection of dependent components, procedures or functions designed
to be parts of the main program. They are not complete programs in themselves, and
as such, they cannot run independently. It often happens that a module becomes ready
for testing before the rest of the main program is in a condition to supply it with realistic
data. In such a case, it is common practice to write a small program, often called a
driver or a test-harness to run the module and supply it with appropriate test data and
an interface under a test simulation environment.

To save time driver programs are now commercially available; they scan the module
source code, analyse the inputs and outputs and automatically generates the test code
necessary to construct a test-harness, complete with the required input and output
drivers.

Use is also made of stubs. A stub is a module that has the appropriate interface but
does not contain a lot of code. It might contain, say, no more than a line of code to
display what the module will do when it’s been completed or to return an arbitrary or
random value of the appropriate type. The system as a whole is laid out using stubs to
ensure that, from the first, the overall structure is correct. The stubs are then converted
into fully functional modules.

Needless to say these software resources free up valuable time for the program
developers in that they can spend more time on coding and less time on testing.

With sizeable applications, containing a large number of modules things become a little
more complicated, however. The system may have to be divided into sub-systems
that are developed separately. Modules are created and tested, within their sub-
systems. When all modules have been tested, the sub-system as a whole is then tested.
Following this the numerous sub-systems are brought together, or integrated, and the
entire system is tested. At this stage any errors existing between the sub-systems are
identified and rectified and when complete, the program is said to be correct in as much
that it runs to the original specification.

At system level the type of testing would be black box testing. Exhaustive white box
testing would possibly take years to accomplish at this level.

Black box testing takes the program specification as the sole source of test cases. If the
system stands up to black-box testing, it is passed as acceptable.

One advantage of this approach is that the developers who test a system can be different
from the programmers who create it. In some cases, program testers don’t even know
the programming language in which the program has been written. They read the
specification, create test cases, and test the program and, if any output does not match
the expectation as defined in the specification, it is sent back for what’s sometimes called
a bug-fix.

Finally, the system is installed on the client’s site, and is subjected to what is called
acceptance testing: if it passes, it’s accepted.

© HERIOT-WATT UNIVERSITY

4.1. SOFTWARE TESTING IN MORE DETAIL 83

The testing process involves feedback. Sub-system testing, for example, might indicate
errors in a module, which would need to be debugged and tested again before the sub-
system can be re-tested. Figure 4.1 represents these processes in context:

����	�
����
��

����������
����
��

��$� ����
����
��

��������
��
����
��

���������
����
��

Figure 4.1: Progression of testing diagram involving feedback

With commercial software projects, the usual strategy is to test the software twice. The
software is first tested within the organisation and this is known as alpha testing. This
is followed by the final phase in the testing process which is acceptance testing, also
known as beta testing.

Alpha testing can be regarded as "does the software work?"

Acceptance testing is more for the client to say, "are we willing to pay for the software?"

4.1.4 Alpha testing

Alpha testing is the stage of the development cycle where the software is first able to
run but it may not contain all the features that are planned for the final version. Alpha
testing usually takes place on the software developer’s premises

Alpha testing is typically done for two reasons:

1. to reassure clients that the software is in a working condition but not released to
them

2. to find errors that may only be found under operational conditions

Alpha testing is performed on an early version of the software. However since it will not
have all the intended functionality it will have core functions and will be able to accept
inputs and generate outputs in accordance with user specifications.

Usually, the most complex or most used parts of the code are developed more
completely during the alpha phase, in order to enable early resolution of design
questions that might arise. Nevertheless due to the very nature of testing an entire
system, Alpha testing traditionally occurs quite late in the software development cycle.
Unfortunately in many cases, time for testing is squeezed very tightly at the end of the
development. Thus compromises in the quality of testing procedures are made

Ideally Alpha testing should be conducted with as much independence as possible from
the development team and any of the personnel that performed other forms of testing
up to that point. Independent scrutiny can bring a fresh view point to the project.

However in the real world, not many organisations have the resources for an
independent Alpha test team. Consequently testers have to wear both hats. An
alternative is to co-opt personnel closer to the customer, such as consultants and
implementers to do the testing but this, consequently adds to the overall costs of the
project.

© HERIOT-WATT UNIVERSITY

84 TOPIC 4. SOFTWARE TESTING AND TOOLS

4.1.5 Beta (acceptance) testing

Acceptance testing is the highest level of test in the software development cycle and is
a test for a software product prior to commercial release.

It confirms that the program is as near correct as possible in relation to the requirement
specification. It follows the sequence of alpha testing if a program has been developed
for use by particular clients, and is installed on their site. The clients use the program
for a given period and then report back to the development team. The process might
be iterative, with the development team making adjustments to the software. When the
clients regard the program’s operation as acceptable, the testing stage is complete.

The organisation generates a build of the software, with the production standards of a
released product. Ideally the software should be packaged with the documentation and
other artefacts that are also to be delivered. Installation documentation and the basic
operational documentation are especially important in this respect.

Acceptance testing involves sending the product to beta test sites outside the company
for real-world exposure or offering the product for a free trial download over the Internet
or sending it out on CD.

If the software is to be a commercial product then it is sent to a variety of independent
users who agree to test the software and report and log any faults or defects. The
program will then undergo modification and an updated version submitted for re-testing.
The process will be repeated until the software developers believe that the product is
ready for distribution. Finally any minor bugs that come to light will be corrected by
software upgrades or patches.

How the testers are selected depends on the software and the environment into which
it is to be released. For example if the project is a very large system for a government
department, then the beta testers should be drawn from the team implementing the
system and experienced end-users. Conversely a mass market graphics product may
be tested by many hundreds of artists, drawn at random from interested parties.

Finally there has to be a mechanism for the beta testers to log incidents or defects and
report back to the developing team.

The positioning of the final product within the software development cycle is closer to
market than that of Alpha testing due to the increased independence of the testers. In
the real world, however, commercial pressures will often determine the beta release.
For example if a release date has been sent to the press, embarrassment will ensue if it
slips. Thus beta testing may start before the software is ready.

Even at this late stage in the process, functionality delivered in the beta release may not
be what is in the final product due to the under-resourcing of testing procedures or other
organisational pressures. However if major modifications are needed, then something
has gone seriously wrong with that organisation’s development processes and the client
has every right to take legal action.

© HERIOT-WATT UNIVERSITY

4.2. DEBUGGING METHODS 85

4.1.6 Review questions

Q1: What is meant by component testing?

Q2: What are the difficulties encountered in module testing and how are they
overcome?

Q3: Explain the term alpha testing and where it is performed during the development
process.

Q4: Describe three main features of acceptance testing.

Q5: What three processes does the process of software testing hope to achieve?

4.2 Debugging methods

In the following section all examples of the debugging methods are exemplified
in Visual Basic. However the general principles outlined still apply to any
programming environment.

A bug is a fault in a program that causes it to function abnormally. Debugging is the
process of locating and fixing errors in a program, and programs that help to do this are
called "debuggers".

Most software development environments offer a range of debugging tools for help with
programs that produce unexpected output when executed, but the amount of support in
this respect can vary from language to language.

Generally speaking interpreted languages have little need for extra debugging programs
(but some do) since an error will cause the program to halt at or near an offending line
when the program is run. Compiled languages however produced object code which is
then executed independently of the program source code. The first task of a debugging
tool is to link the object code to source code in order to locate the error in the source
code when the program is run. A special part of the compiler called a link loader is
responsible for this.

Note that with the debugging feature activated a program will be compiled somewhat
slower so it is only used when absolutely necessary when other methods of debugging
have failed.

Debugging tools usually take the form of:

• Dry runs

• Trace tools

• Watch statements

• Break points

© HERIOT-WATT UNIVERSITY

86 TOPIC 4. SOFTWARE TESTING AND TOOLS

4.2.1 Dry run

Bugs can be extremely difficult to locate and correct. The temptation is to stay at
the computer and tweak the code until the program runs correctly. If this is done
unsystematically, it can change the program from one that only had a single minor error
to one that has multiple errors. If the bug does not become apparent readily, usually the
best course is to get away from the computer and conduct a dry run, if not of the entire
program, at least of the part of the program that seems to be causing the trouble.

The program might be giving wrong output or performing an infinite loop which is a
common programming error.

A dry run, sometimes referred to as desk checking, is based on a listing of the code or
algorithm. The programmer works through the code manually, using pencil and paper
and takes over the role of the computer. Test data is entered to check that the program
or part of the program, subroutine or function is working correctly.

The trace table (see Table 4.2) contains the program variables and each row of the table
will display their values as the logic of the algorithm unfolds. The actual output can then
be checked against expected output and any discrepancy will, hopefully, reveal the error.

This technique is useful for locating logic errors in a program and is only practical for
fairly simple programs and small amounts of data.

Consider the following Visual Basic program fragment in Code 4.1 to calculate the
average of a list of marks input by the user:

0��)��� ��� ��:�����
�'8 &
LMN?)���"� ���8� ���"���
	��8 � ��� � ������� � ?)���"� � $
A� 6%�
� 	��8 O1 ###
	��8 � 2����I�� KE���� � ���8 �%�� ### �� ��:K&
��� � ��� � 	��8
������� � ������� � �

@���
?)���"� � ��� < �������
0�'����
��0���� ?)���"�
E�: ���

Code 4.1: Visual Basic program fragment

After the variables are initialised a loop is entered where the user is asked to enter a
mark. The loop terminates when the dummy or rogue value 999 is entered to signify the
end of the input. The value of the average mark is then output.

A trace table can be constructed to show the values of the variables as the program
executes in ’dry run’ mode. See Table 4.2

© HERIOT-WATT UNIVERSITY

4.2. DEBUGGING METHODS 87

Table 4.2: Trace table

Loop Counter Mark Sum Mark = 999? Average

0 0 0 0 False
1 1 52 52 False
2 2 68 120 False
2 3 47 167 False
3 4 50 217 False
5 5 999 1216 True 243.2

Not the answer that was expected. It seems that the rogue value 999 has become
involved in the calculation and it shouldn’t have been!

Inspecting the code reveals that the while loop is testing the value of mark too late in the
program to terminate the action of the rogue value.

The remedy is to copy the statement

	��8 � 2����I�� KE���� � ���8 ��

�;�: �
 ###K&

and place it before the ;%�
� loop so that the value can be checked before the loop is
entered. Also the present statement is moved down to the end of the loop so that the
values of ��� and ������� are unaffected.

The revised code in Code 4.2 now looks like:

0��)��� ��� ��:�����
�'8 &
P?)���"� ���8� ���"���
	��8 � ��� � ������� � ?)���"� � $
	��8 � 2����I�� KE���� � ���8 ��: ��: ����" ###K& P��; ���������
A� 6%�
� 	��8 O1 ###
��� � ��� � 	��8
������� � ������� � �
	��8 � 2����I�� KE���� � ���8 ��: ��: ����" ###K& P��; ��������

@���
?)���"� � ��� < �������
0�'����
��0���� ?)���"�
E�: ���

Code 4.2: Revised Code

This gives the expected answer of 54.25 for the average with the values of ������� and
@��� exiting when their values = 4.

© HERIOT-WATT UNIVERSITY

88 TOPIC 4. SOFTWARE TESTING AND TOOLS

Dry Run Exercise

Consider the following fragment of a program (Code 4.3) which finds the sum of two
valid numbers:

A�� ����� ?� ����"��! ��'��: ?� ����"��

��� "��H�
�:������ I
��� ������ ?� ����"��&
A�� ������>8 ?� ���
���

:�
����� K2���� � ������K
������>8 � ������ 1 $
�� ��� ������>8 �%��

����� K	�8� �� ������)�K
��: ��

��� ����
 ������>8
��: ���

���'���� ��� � �� ����"��! � �� ����"��&�� ����"��
��� � � � �

��: ���'����

P	��� ���"���
"��H�
�:������ �����
"��H�
�:������ ��'��:
����� K7%� ����
 �� K= ��� �����! ��'��:&&

Code 4.3: Sum program

Perform a dry run on the program using the data shown and construct a trace table to
show the program output.

Data: a = 6, -6, 0, 2, 3, 1: b = 0, 3,3, 8, -7, 4, 6

4.2.2 Trace tools

Some programming languages have TRACE facilities as a debugging feature.

Tracing gives access to otherwise invisible information about a program execution. Apart
from allowing the programmer to step through the program line by line (see watch and
breakpoints), and stop at given points to examine variable contents, more enhanced
tools exist that allow investigation of memory locations and, in particular, the contents of
the stack.

Programs that contain large number of procedures use the stack to store all their
procedure calls during program execution. By examining such data any errors occurring
in the order of procedure or function calling from the main program can be checked and
corrected.

© HERIOT-WATT UNIVERSITY

4.2. DEBUGGING METHODS 89

The tool can be toggled between TRACE On and TRACE Off. With the TRACE on
activated the program will execute slightly slower and produce extra output.

4.2.3 Program Watch

A watch takes an identifier and displays its value as the program progresses. The
programmer steps through the code, one statement at a time, and the value of the
variable being traced is displayed on the Watch screen, an example of which is shown
in Figure 4.2:

Figure 4.2: Watch screen

Many programmers prefer to put in watches for themselves in the form of output
statements that cause the value of a variable to be displayed at the points in a program
where a bug is thought to exist. However the drawback to this method is that it extends
the number of lines of code and increases programming time in inserting and deleting
the statements.

To set a watch in Visual Basic load any program and access the Debug menu. You will
see the following drop-down menu as in Figure 4.3:

Figure 4.3: Visual Basic Debug menu

© HERIOT-WATT UNIVERSITY

90 TOPIC 4. SOFTWARE TESTING AND TOOLS

Choose the ?:: 6��'% feature and a dialog box will appear, as in Figure 4.4:

Figure 4.4: Watch dialogue box

In the E���������� box type in the statement that you want to watch and click on OK.

When he program is now run in debug mode it will focus on the ’watch’ statement and
allow you to step through the program line by line by pressing function key F8.

Figure 4.5 illustrates what is happening. Notice also that by placing the cursor over any
of the variables, the value of that variable is shown, in this case 	��8 � (,

Figure 4.5: Visual Basic watch

© HERIOT-WATT UNIVERSITY

4.2. DEBUGGING METHODS 91

Exercise

Practice creating ’watch’ statements in a program either in Visual Basic or the
programming language of your choice.

4.2.4 Breakpoints

A breakpoint is a marker set within the code of a program to halt program execution at
a predefined spot. The statement or variable expression responsible will be highlighted
and can be inspected while the program is temporarily interrupted. The program then
continues, either to completion or until it hits another breakpoint.

Breakpoints are often used with traces. To set a breakpoint in Visual Basic, access the
Debug menu.

Load any Visual Basic program and highlight a line of code or click in the margin. From
the Debug menu choose 7�""
� I���8����� and this will set a marker at that point.

Alternatively simply click in the margin opposite the line of code.

The example shown in Figure 4.6 is the Average marks program with a breakpoint
added:

Figure 4.6: Breakpoint set

When the program is run it will now pause at that position. To remove the breakpoint
click on the coloured dot. By pressing function key F8 the program can be continued in
’Step Into’ mode, line by line or the debug option may be cancelled by pressing function
key F5.

Exercise

Practice creating ’breakpoints’ in a program either in Visual Basic or the programming
language of your choice.

4.2.5 Review questions

Q6: Explain the difference between the testing of software and debugging of software.

Q7: In programming a developer might make use of break points and watch
statements. Explain the meaning of each of these terms.

© HERIOT-WATT UNIVERSITY

92 TOPIC 4. SOFTWARE TESTING AND TOOLS

Q8: Use a trace table to show how the values of the variable Count, Number1 and the
condition Count � 4 when the following statement is executed:

������� � *
����� � $
������

������� � ������� � �����
����� � ����� � �

G���
 ����� 1 *

4.3 CASE tools

CASE is an acronym which stands for Computer Aided Software Engineering. It refers
to collections of software programs that are designed to automate the various phases of
the software development cycle.

The implementation of new systems requires many different complex tasks to be
organised and completed correctly and efficiently. Information generated during the
various phases has to be kept in synchronisation; a typical development environment
requires that system design be closely related to resultant source code and be described
by customary documentation, and that all of these areas be under centralised version
control. The tools that support the individual tasks of design, coding, documentation,
and version control must be integrated if they are to effectively support this kind of
scenario.

Using previous ’paper and pen’ techniques important information could very easily be
lost between the software stages in a vast jumble of paper documentation, thus delaying
progression of the software project.

The use of CASE tools eases the task of coordinating these activities from analysis right
through to implementation.

Commercial CASE tools are now widely available and vary extensively in functionality
and capability, but there are a set of features that are commonly found in most.

The following basic categories are typical of CASE tools available today:

1. Diagramming tools that represent data models according to system specifications.

2. Screen and Report Generators for creating system specifications.

3. Data Dictionaries that contain a history of changes made to a system

4. Code Generators to be able to generate code from data Diagrams themselves.

5. Documentation generators that make the code more readable.

© HERIOT-WATT UNIVERSITY

4.3. CASE TOOLS 93

4.3.1 Development of CASE tools

Since the early days of writing software, there has been an awareness of the need
for automated tools to help the software developer. Initially the focus was on program
support tools such as document production, translators, compilers, assemblers and so
on. As computers became more powerful and the software that ran on them grew larger
and more complex, powerful tools with increased functionality were therefore required.
Figure 4.7 shows this development:

��!�

	�
�

�	
��
"

��
�
�

�����$	���

����
	����6�
�����������

��$���
������	�

��,�
�����������	 �
�
���
��7����
�
�����	�

�������������������
��

�����������'����	�

����������'����	�

Figure 4.7: Development of CASE tools

It is said that the "holy grail" of CASE tools is to completely construct the source code
directly from the requirements analysis but this is still a long way off!

4.3.2 Categories of CASE tools

CASE tools can be divided into two main groups - those that deal with the first three parts
of the system development life cycle (preliminary investigation, analysis, and design)
and are referred to as Front-End CASE tools or Upper CASE tools, and those that
deal mainly with the implementation, testing and installation are referred to as Back-End
CASE tools or Lower CASE tools. This is shown in Figure 4.8:

+�,�
�������
����
�
���
��

� �����
���	 �
�
��
�� ���	�������
�� #���
�� ��
��������

8��������� ��%�������

Figure 4.8: Categories of CASE tools

Developers tend to believe that the use of upper CASE tools have more importance than
than the use of lower CASE tools in the software development process and that more
time spent in the initial stages is beneficial to the overall process.

© HERIOT-WATT UNIVERSITY

94 TOPIC 4. SOFTWARE TESTING AND TOOLS

4.3.3 Upper (Front-End) CASE tools

These are basically general-purpose analysis and design specification tools.

During the initial stages of the system development, analysts are required to determine
system requirements, and analyse this information to design the most effective system
possible. This task is usually accomplished by an analyst using graphical methods such
as data flow diagramming and structure charting techniques. Manual completion of
these tasks makes it very tedious to have to redraw some of the diagrams each time a
change is made to the system, for example. However small the change that is made
to one diagram, this will probably require many changes to be made throughout all the
existing documentation.

In very large systems, unless these changes are well documented, they could be lost or
forgotten about thus leading to an erroneous representation of the system which, in turn
might lead to significant problems during the implementation phase.

Computerised CASE tools would allow for these types of changes to be made
automatically, very quickly and accurately. Information shared throughout the flowcharts
and documentation stages would then be checked against each other to ensure that
there is agreement.

Some large projects produce excessive amounts of documentation, some of it running
into hundreds, if not thousands, of pages. Although development methodologies
provide some structure to the documentation, even the best methodology and the most
meticulous analyst cannot organise, index, and cross-index the information sufficiently
to make it entirely useful. There is always the need to see the information differently
from the way in which it is presented. Even with the best organisation and indexing
methods, hardcopy documentation (printed on paper) is difficult to revise and still more
difficult to keep up to date.

In order to overcome these and other purely mechanical problems involved with
producing and maintaining proper documentation, many firms rely on automated data
dictionaries. These data processing system products are specifically designed to hold,
maintain, and organise analytical information; they come equipped with flexible facilities
for producing a wide variety of reports on the dictionary contents.

A Data dictionary is an automated tool for collecting and organising the detailed
information about system components. Data dictionaries maintain facilities to document
data elements, records, programs, systems, files, users, and other system components.
A dictionary will also have facilities to cross-reference all system components to each
other and contain details of:

• systems environment;

• audit trails;

• reports;

• forms;

• functions;

• processes.

© HERIOT-WATT UNIVERSITY

4.3. CASE TOOLS 95

By using upper CASE tools developers can now be much more productive in the analysis
and design stages of the development compared to using conventional paper and pen
methods.

One of the ultimate goals of upper CASE tools is to refine the requirements analysis and
design specification process to such an extent that most of the application code, around
75%, could be generated automatically. This would be a further enhancement to give
analysts and designers more time in the initial stages of the development.

4.3.4 Lower (Back-End) CASE tools

Lower CASE tools focus on the architecture of the system and its implementation
and maintenance. These tools are also effective in helping with the generation of the
program code and are referred to as code generators.

A code generator is a tool that enables automatic generation of program code directly
from analysis and design specifications including design documents, structure diagrams
and reports. Generating code this way ensures that all the code is produced with
identical naming conventions, documentation etc. No two developers could make that
guarantee! See Figure 4.9.

In 2005 the automatic code generation process can produce about 45% - 50% of source
code. The future aim is to increase this to 80% and beyond but this may take some time
yet.

+������

������

��������

���'
���	�

���������	�
���		
�
�
��	
���������������
�
���
��������
����	
������������

���

���
��
���
��
����
��������
���� �!�!"#

��
��	�	�
��
��	��������� ���#���$����!��� ����"��"���

Figure 4.9: Code generation

Code generators also produce a high quality of code that is easy to maintain and is
portable to different hardware platforms. They also have the feature that they are able
to interact with the upper CASE tools. Information produced by the upper CASE tools
can be accessed using the code generators to aid in the development of the code.

A further enhancement is the use of document generators.

A document generator is a CASE tool that generates technical documentation from
source code comments. If this were to be done manually then problems would exist
by different programmers using differing formats for their comments. However by using
a CASE code generator the comments will automatically conform to a standard format.

© HERIOT-WATT UNIVERSITY

96 TOPIC 4. SOFTWARE TESTING AND TOOLS

This allows programmers to browse, edit, document and understand program source
code in any specified language. Also the output can be in a variety of formats such as
text or HTML.

4.3.5 Object-Oriented CASE

CASE tools are well-supported in object-oriented programming systems (OOPS). The
principles of objects, classes and inheritance are fully supported and advocates
of OOPS maintain that development issues become more apparent and easier to
understand.

Earlier problems with OOPS focussed on the models created for software development
systems; the models differed in notational techniques. This was overcome by the
use of UML. The Unified Modelling Language (UML) created in 1995, became the
new standard for producing diagrams and charts. All current CASE tools have now
adopted UML. UML is used for specifying, visualising, constructing, and documenting
the elements of software systems, as well as for business modelling and other non-
software systems.

UML diagrams can be fairly complex entities. To view a selection of screen shots folow
the following links:

http://www.visual-paradigm.com/sdevsScreenshots.php

http://pigseye.kennesaw.edu/~dbraun/csis4650/A�D/UML�tutorial/interaction.htm

Today CASE tools offer automatic code generation from the UML Diagrams created in
the analysis phase. The CASE tool produces a framework for the code which contains
objects and class definitions. They produce what is known as an executable prototype.
This is an executable source code program obtained directly from the analysis
Diagrams and specifications in UML. One of the main features of this process is
reverse engineering where some tools analyse existing source code and reverse-
engineer it into a set of UML Diagrams.

Figure 4.10 illustrates a typical object-oriented CASE environment:

&���
	
���
�����

���'
���	

&�������
��
��!
�������

8���

��������
���	�

���$���
����������

� ����

+�,�
�������

�������6
����
�
���
��� 0������������� '(�����$	�������� ��

�����������!����
���
����
��

�
���%�
���������

Figure 4.10: Object-oriented CASE environment

© HERIOT-WATT UNIVERSITY

http://www.visual-paradigm.com/sdevsScreenshots.php
http://pigseye.kennesaw.edu/~dbraun/csis4650/A_D/UML_tutorial/interaction.htm

4.3. CASE TOOLS 97

CASE tool developers claim to incorporate best practices into their products. In
conjunction with UML techniques developers also employ Rational Unified Process
(RUP) methodologies. This is a development process, now supported by IBM to deliver
best proven practices during each stage of a project. Using RUP the risks are effectively
lowered during all stages of the software development process as seen in Figure 4.11.

�
��

�
�
"

���	 �
� ���
��
��	�������
�� ����
��

��
���+8&

�������		�����	

Figure 4.11: Lower Risks with Rational Unified Process (RUP)

4.3.6 Advantages of CASE Tools

1. Increased Speed

CASE Tools provide automation and reduce the time to complete many tasks,
especially those involving Diagramming and associated specifications at the
design stage. This ultimately speeds up the entire development process and
hence will increase productivity in the long term.

2. Increased accuracy

CASE Tools can provide ongoing debugging and error checking which is vital for
early defect removal. Less effort and time are consumed if corrections are made
at an early stage of the development process such as the design stage. As the
system grows larger, it becomes difficult to modify with error detection becoming
increasingly more difficult and costly in terms of time and cost.

3. Reduced costs and maintenance

As a result of better design, better analysis and automatic code generation,
automatic testing and debugging, overall systems quality improves. There is also
better documentation. Thus, the net effort and cost involved with maintenance
is reduced. Also, more resources can be devoted to new systems development.
CASE provides re-engineering tools which can be important because they make

© HERIOT-WATT UNIVERSITY

98 TOPIC 4. SOFTWARE TESTING AND TOOLS

this process more efficient and less expensive by determining which of the older
parts of the system can be reused.

4. Better Documentation

By using CASE Tools, vast amounts of documentation are produced along the
way. Most tools have provision for comments and notes on systems development
and maintenance. An important aspect of this is the CASE Repository or
encyclopaedia. This takes the form of a developers’ relational database which
is regularly updated with information relating to software development projects.
Such information could include specifications, codes and definitions that can
be re-generated to form multiple diagrams. There will also be an audit trail of
people, data, processes and technologies used that refer to a specific phase of a
development project.

5. Better communication

By using a set of CASE tools, information generated from one tool can be passed
to other tools which, in turn, will use the information to complete its task, and then
pass the new information back to the system to be used by other tools. This allows
for important information to be passed efficiently and effectively between planning
tools. Results of one stage should be available to another resulting in ’forward’
integration. When using the old methods, incorrect information could be passed
between designers or could simply be lost in the shuffle of papers.

4.3.7 Limitations of Case tools

Although CASE tools are becoming more popular in software development
environments their uses can be subject to some limitations.

1. Choice

It is estimated that over 1000 CASE tools are in existence today (2005) and the
decision of which one will best fit a company’s needs is not an easy one. The
failure or success of the tool is relative to expectations. The evaluation and
selection of a CASE tool is a major project in itself and should not be taken
lightly. Time and resources need to be allocated to identifying the criteria on
which the selection is to be based. Success with CASE will most likely occur
when developers and managers choose tools based on methodologies similar to
already in place within the organisation.

2. Costs

CASE tools are not cheap! In fact, most firms engaged in software development
on a small scale do not invest in CASE tools because they think that the benefits
of CASE would be unjustifiable in cost terms alone. The cost of equipping every
systems developer with a preferred CASE tool kit can be quite high. Hardware,
systems software, training and consulting are all factors in the total cost equation.
Although, there are an increasing number of good open source tools.

3. Training

In most cases, programmer productivity may fall in the initial phase of
implementation, because users need time to learn the technology. In fact, a CASE

© HERIOT-WATT UNIVERSITY

4.4. SUMMARY 99

consulting industry has evolved to support uses of CASE tools. The consultants
offer training and on-site services that can be crucial to accelerating the learning
curve and to the development and use of the tools.

CASE tools are a relatively new technology but have one of the highest growth rates
compared to any segment in the computer industry. Many companies have begun
buying copies of tools; in effect adopting CASE technology as their software productivity
strategy. Progressive businesses are already changing how they think about developing,
maintaining and enhancing their systems, and are finding strategic advantage in doing
so.

For more information on CASE tools you may wish to use the following links:

http://www.uwm.edu/People/derek/course/Tools/CASE/keydfd.html

http://educ.queensu.ca/~compsci/units/casetools.html

http://www.cs.utexas.edu/users/almstrum/cs370/tlee/r1.htm

4.3.8 Review questions

Q9: What is a CASE tool and why were they developed?

Q10: Differentiate between upper CASE and lower CASE tools.

Q11: List three advantages that a software developer might find in using CASE tools
and also three limitations that they might have.

4.4 Summary

The topic has described large scale testing procedures within software development
and the various strategies employed. This can be a fairly extensive process. Debugging
techniques offer important tools to the programmer including CASE tools that are now
becoming more of an integral part of software development.

By the end of this topic you should now be aware of the following objectives:

• that software testing is a complex and expensive process involving many
procedures before the final product is released to the client;

• that debugging tools in software development can aid the programmer to locate
and fix errors in programming;

• that CASE tools are becoming increasingly accepted into most aspects of software
development.

End of topic test

Q12: Alpha testing is performed on the client’s premises.

a) True
b) False

© HERIOT-WATT UNIVERSITY

http://www.uwm.edu/People/derek/course/Tools/CASE/keydfd.html
http://educ.queensu.ca/~compsci/units/casetools.html
http://www.cs.utexas.edu/users/almstrum/cs370/tlee/r1.htm

100 TOPIC 4. SOFTWARE TESTING AND TOOLS

Q13: Alpha testing finds errors that can only be found under operational conditions.

a) True
b) False

Q14: Alpha testing is performed on the finished product prior to implementation.

a) True
b) False

Q15: The best tool for a programmer to test the logic of a program is:

a) Dry run
b) Breakpoint
c) Watch statement
d) None of these

Q16: Give an example of an error that debugging software will not be able to find

Q17: State the main purpose of a CASE tool.

Q18: Which one of the following is associated with modern case tools?

a) Unified modellling language
b) Executable prototype
c) Reverse engineering
d) All of the above

Q19: CASE tools are not in widespread use because they are too expensive

a) True
b) False

© HERIOT-WATT UNIVERSITY

101

Topic 5

High level programming language
constructs 1

Contents

5.1 File handling . 102

5.1.1 Sequential files . 102

5.1.2 Manipulating sequential files . 104

5.1.3 Review questions . 111

5.2 Arrays . 111

5.2.1 2-Dimensional Arrays . 111

5.2.2 Implementation of a 2-dimensional array 113

5.2.3 Initialising an array . 113

5.2.4 Reading data into an array . 114

5.2.5 Outputting array data . 114

5.2.6 Review questions . 117

5.3 Summary . 117

Learning Objectives

After studying this topic, you should be able to:

• Describe and exemplify the following constructs in pseudocode and an appropriate
high level language:

– Files: File handling: write, read, delete item, create new file;

• Describe and exemplify the following variable types:

– 2-D arrays.

102 TOPIC 5. HIGH LEVEL PROGRAMMING LANGUAGE CONSTRUCTS 1

The practical aspects of this topic extend to file handling skills where sequential and
random types are explained and implemented. The topic also expands on the work
done in Higher Computing in dealing with static data structures, arrays. The concept of
2-dimensional arrays are introduced and implemented in both pseudo code and a high
level language..

5.1 File handling

An important aspect of any programming language is its ability to access and manipulate
files as part of its I/O system.

There are three types of data file that can be used to store information, namely:

1. sequential

2. random

3. binary

In this topic emphasis will be focussed on sequential files since they are more
straightforward to implement in a programming language.

Random access files are dealt with later in the topic when the data structure is
discussed. Manipulation of records requires the use of random access files for the
tasks of creating, reading and writing.

Binary files are similar to sequential files but the data types can vary. They may contain
characters, numerical data or the contents of an executable file. Images can also be
stored in binary files. Although they offer greater flexibility the files have no defined
structure and are somewhat more difficult to program. They will not be discussed further.

5.1.1 Sequential files

Sequential (text) files have a universal standard format and are used extensively in
simple text editors. The Windows Notepad application, for example creates simple text
files. Even numerical data is stored as a string, for example 5.76 would be stored as
"5.76". Such files use disc space efficiently but are difficult to update - hence they are
only used for text.

Sequential files are read from beginning to end and so the files cannot be read and
written to simultaneously.

A sequential data file can be thought of as a 1-dimensional array with each array
location storing a single byte of data, such as an ASCII character. As an example,
the data referring to a name and telephone number, 7>A ?� ��� (*��, would be stored
in memory as:

: (& : � : 0 : " " / 6 7 " / : 3(,#

© HERIOT-WATT UNIVERSITY

5.1. FILE HANDLING 103

The name is contained in a field which is separated from the telephone field using a
comma.

There are also hidden ASCII control codes: the end of the field is signified by a
paragraph symbol. This represents both a carriage return (CR) and linefeed (LF),
equivalent to pressing the Return key in an application like a word processor. The EOF
marks the end of the file.

The complete information represents a data structure called a record and this will be
discussed later.

The manipulation of files involves three stages as shown in Table 5.1:

Table 5.1: File processes

Opening a file If the file does not exist then it is created and then opened by the
operating system, which reserves a portion of memory for the file.

Processing a
file

Once a file is opened it can be written to or read from, or both in the
case of random and binary files. Writing to a file will save it to
backing store.

Closing a file Once a file has been opened and processed it must then be closed.
When a file is closed the operating system releases the memory
that it reserved for the file.

In Visual Basic a file is opened or created using the Open command. This is achieved
by using the statement:

>��� K5�
�����K 5�� 5�
�7
�� ?� Q�%����
������

Each file created must have a file name and a file number for identification.

The command opens a file called 5�
�����, the name of the file to be opened or created
and allocates it a �%����
������ for identification. Every file that is opened has a
different channel number, starting at 1 and increasing by 1 for every file that is opened.
Visual Basic does this automatically. The use of the hash symbol, Q is a Visual Basic
directive to the computer filing system.

The argument 5�
�7
�� determines what type of file is being processed and also the
type of access. Table 5.2 shows the options:

Table 5.2: File options

Input The file is opened for input which is read only.

Output The file is opened for output which is write only or create.

Append The file is opened for adding new data to an existing file. The
default setting in Visual Basic.

Random The file is opened for random access which is reading or writing
one record at a time.

Binary The file is opened in binary mode.

The first three options refer to sequential files only. Note that if the argument is missed
out in the statement then ���:�� is assumed by default.

© HERIOT-WATT UNIVERSITY

104 TOPIC 5. HIGH LEVEL PROGRAMMING LANGUAGE CONSTRUCTS 1

You can also specify the path where the file will reside on the hard drive. For example,
the statement:

>��� K'��	
 A�'�����������
����K 5�� >����� ?� Q�

will create a text file called ����
���� in the ’My Documents’ folder on the C: drive.

5.1.2 Manipulating sequential files

Although the file options '�����, ����, ���:, ;���� and :�
��� are all explained
separately, the code for each form part of a complete program that can be seen in
Code 5.4. The program form is shown in Figure 5.1. You may wish create this first
before proceeding with the code.

Opening (creating) a sequential file

Before data can be written to a sequential file, the file must be created. Characters
are then ’printed’ to the file using a simple text window and the file is then closed. The
following algorithm will achieve this:

�� E���� ��
�����
�� >��� ��
� ��� ;�����"
(� 2���� �����������
,� ��)� �� ��
�
�� �
��� ��
�

The corresponding Visual Basic code is shown in Code 5.1. To show the output a text
box is used.

>����� E��
�'��
A�� 5�
����� ?� �����"
P5�
� ������
����� ���"���
P������ ��
�
0��)��� ��� '�:������5�
���
�'8 &
5�
����� � 2����I��R K0
���� ����� � ��
�����K&
>��� 5�
����� 5�� >����� ?� Q� P������ ��
�
0���� Q�! 7�����7���
�
��� Q�
E�: ���

Code 5.1: Open(create) file

The program will create a file and open it ready for input of text in the text box,
7�����7��� ’5�
�����’ is any valid name that is input by the user via the 2����I��R
function.

Each time text is entered it can be saved to the same file, in which case existing data
will be over-written. Alternatively it can be saved as a new file.

NB. In Visual Basic if an existing file is opened using the >����� option then the contents
will be wiped even if nothing is written to it!

This is where the ?����: option becomes useful. By using ?����: a file can be opened
and data added to it. The original data cannot be changed.

© HERIOT-WATT UNIVERSITY

5.1. FILE HANDLING 105

Reading a text file

Once a file has been created using the program in Code 5.1, it can be read at any time.
The following algorithm will achieve this:

�� E���� ��
�����
�� >��� ��
� ��� ���:��" ����" �����
(� �
��� ��
�

The corresponding Visual Basic code is shown in Code 5.2:

0��)��� ��� '�:���:��
�'8 &
5�
����� � 2����I��R K0
���� ����� � ��
�����K&
>��� 5�
����� 5�� 2���� ?� Q� P���: ��
�
7�����7��� � 2����R @>5 �&! �& P@��"�% �� ��
�
�
��� Q�
E�: ���

Code 5.2: Read file

The program will open the file assigned to the string 5�
����� for input through
'%����
 �. The contents of the file are read into the ����� window using the 2����R
statement. The @>5 �& part gives the length of the file to be input, a single character at
a time. Finally the file is closed.

NB. When you create the text window 7�����7��� ensure that the property 	�
��
���
option is set to 7���. This ensures that text wrapping occurs within the text window.

Deleting a file

Any file may be permanently deleted using the S�

 statement within Visual Basic. The
file is not sent to the recycle bin.

The following algorithm will achieve this:

�� F�� ��
�
�� A�
��� ��
�. 4��<��
(� 2� P
��P �%��
,� S�

 ��
�

The VIsual Basic code for this is shown in Code 5.3:

A�� �������� ?� �����"
�������� � 	�"I�� K?��
�� ����
�� ;��� �� :�
���K!)�4����&
2� �������� �)�4�� 7%��
S�

 5�
�����
E�: 2�

Code 5.3: Delete file

The variable �������� will take the value 4�� or �� depending on user input. Note the
Visual Basic construct)�4���� that is identical to text input "Yes" and "No" which saves
time!

© HERIOT-WATT UNIVERSITY

106 TOPIC 5. HIGH LEVEL PROGRAMMING LANGUAGE CONSTRUCTS 1

If the response is 4�� then the file is permanently deleted.

To test this out, incorporate the above code and associate this with the button called
A�
���. Now run through the following steps:

�� ������ ��
� ��: "�)� �� � ����
�� 7
�� �� ���� ����
(� �
��� �%� ��
�
,� �
��� �%� ���� ��� ��:
��: �%� ��)�: ���"���� 4��� ���� �%��
: �������
�� A�
��� �%� ��
� ��: '
��� ���� ���
*� @��: ��
� �%��
�� ��)�:

A run-time error should occur because the file cannot be found; it has been deleted.
Success!

Here is the completed Visual Basic program, Code 5.4, containing all the file features:

>����� E��
�'��
A�� 5�
����� ?� �����"

P��
P��3������
 5�
� ������
����� ���"��� �
P7%�� ���"��� �

�������� ��
� '�����:� �
P �
P��)����� �$$, �
P��

0��)��� ��� '�:>0E���
�'8 &
P>0E� 52@E 5>� 6�272�F
5�
����� � 2����I��R K0
���� ����� � ��
�����K&
>��� 5�
����� 5�� >����� ?� Q�
0���� Q�! 7�����7���
�
��� Q�
E�: ���

0��)��� ��� ��:�E?A��
�'8 &
P>0E� 52@E 5>� �E?A2�F
5�
����� � 2����I��R K0
���� ����� � ��
�����K&
>��� 5�
����� 5�� 2���� ?� Q�
7�����7��� � 2����R @>5 �&! �&
�
��� Q�
E�: ���

0��)��� ��� ��:A�
�����
�'8 &
PAE@E7E 52@E
A�� �������� ?� �����"
�������� � 	�"I�� K?��
�� ����
�� ;��� �� :�
���K!)�4����&
2� �������� �)�4�� 7%��
S�

 5�
�����
E�: 2�

© HERIOT-WATT UNIVERSITY

5.1. FILE HANDLING 107

E�: ���

0��)��� ��� '�:�
�����
�'8 &
P�
��� ���� ���
7�����7��� � K K
E�: ���

0��)��� ��� '�:E�����
�'8 &
PE�: ���"���
E�:
E�: ���

Code 5.4: Complete file program

A screenshot from the program is shown in Figure 5.1.

Figure 5.1: Program output

Exercise

Extend the program by including the ?����: option as a new button on the form. The
code for this is shown in Code 5.5:

0��)��� ��� ��:?00E�A��
�'8 &
P>0E� 52@E 5>� ?00E�A2�F
5�
����� � 2����I��R K0
���� ����� � ��
�����K&
>��� 5�
����� 5�� ?����: ?� Q�
0���� Q�! 7�����7���
�
��� Q�
E�: ���

Code 5.5: Append option

© HERIOT-WATT UNIVERSITY

108 TOPIC 5. HIGH LEVEL PROGRAMMING LANGUAGE CONSTRUCTS 1

When you use the Append option you will not see much happening! It has to be done in
the correct order as foillows:

�� ��� ���"��� ��: ����� ���� ����
�� �
�'8 �� >���
(� �
��� ����
,� �
�'8 �� ���: �� ������ ��
� ������
�� E���� ����%�� ����������� ��: '
�'8 �� ?����:
*� �
��� ���� ����
�� �
�'8 �� ���: ��: �%� ��:���: ��
� �%��
: ������

You should now be able to create, write to, read from and delete a sequential file.

Exercise

One of the limitations of the previous program is that if you forget the name of the file to
open or append then you need to go searching! If there was some way to catalogue the
disc area then that would allow you to see the files that have been saved.

By using a Windows option called the ������A��
�" filter, a directory listing may be
achieved. The ������A��
�" filter is a Windows construct that allows Visual Basic
programs to interact with the Window operating system.

For this to happen the CommonDialog control box has to be added to the project form.
This is done as follows:

�� >��� H����
 I���'
�� ?''��� �%� 7��
��� ���� �%� ����
(� �%���� ���������� ���� �%� 0��-�'� ����
,� 2� �%� ������
� ��� ��'8 �%� ��� ���� �� 	�'������

������A��
�" ��: '
�'8 �� >S�

You will see a new icon in the 7��
���:

�� A��" �%�� �'�� �� �� �%� ���� ��: �� ;�

 ;��8 �;�
 �� �%� ��'8"����:

© HERIOT-WATT UNIVERSITY

5.1. FILE HANDLING 109

In Visual Basic open a new project and type in the code as shown in Code 5.6:

>����� E��
�'��
A�� 5�
����� ?� �����"
A�� �%����
������� ?� 2���"��

P���
P0��"��� ��� ��
� ������
����� ����" 6��:�;� �������'� �
P �
P��)����� �$$, �
P���

0��)��� ��� '�:@��:��
�'8 &
PG���" �%� >0E� :��
�"�� ���
������A��
�"��5�
��� � K?

 ��
�� ���&

T���T7������
�� �����&T�����THI�7������
�� �����&T�����K
������A��
�"���%�;>���
5�
����� � ������A��
�"��5�
�����
>��� 5�
����� 5�� 2���� ?� Q�
7�����7��� � 2����R @>5 �&! �&
�
��� Q�
E�: ���

0��)��� ��� ��:��)���
�'8 &
PG���" �?HE ?� :��
�"�� ���
������A��
�"��5�
��� � K?

 ��
�� ���& T���T7������
�� �����&T�����K
������A��
�"���%�;��)�
5�
����� � ������A��
�"��5�
�����
>��� 5�
����� 5�� >����� ?� Q�
0���� Q�! 7�����7���
�
��� Q�
E�: ���

0��)��� ��� ��:�
�����
�'8 &
7�����7��� � K K
E�: ���

0��)��� ��� ��:E�����
�'8 &
E�:
E�: ���

Code 5.6: Files under Windows

The program contains two main lines of code to load (open) and read a file.

The ������A��
�"��5�
��� is used to set the type of files to be catalogued. In this case
most options are given with each type separated by the pipe character, ’|’. You may
choose your own file types to view.

The lines ������A��
�"���%�;>��� and ������A��
�"���%�;��)� determines which
Windows dialogue option is used i.e. >��� and ��)�.

© HERIOT-WATT UNIVERSITY

110 TOPIC 5. HIGH LEVEL PROGRAMMING LANGUAGE CONSTRUCTS 1

Finally the 5�
����� is prefixed with ������A��
�"� to ensure the correct path when
loading and saving the file.

Figure 5.2 shows the directory access in action, loading the file called 0
��������� that
you met in a previous topic:

Figure 5.2: CommonDialgue in action

Figure 5.3 shows the program run.

Figure 5.3: Program run

Run the program and experiment with files of your choice. Remember to set the
��
��
��� property of he text box to ���� to allow text wrapping.

© HERIOT-WATT UNIVERSITY

5.2. ARRAYS 111

5.1.3 Review questions

Q1: What is a sequential file?

Q2: Explain the processes of creating a sequential file and reading a sequential file.

Q3: Show in the form of a diagram how the following information, relating to golf
handicaps would be stored as a sequential file in computer memory:

Vardon Hubert: 28

Sayers Bill: 6

Player Gill: 20

Trevino Louis: 1

5.2 Arrays

In the Higher Computing course we looked at the 1-dimensional array, also referred to
as a vector or linear list. They could store a single row or column of values. Such arrays
are useful for holding lists of data that can easily be manipulated during, for example,
searching and sorting of data.

For example in Visual Basic an array called 	���% containing 12 data items as shown in
Table 5.3 would be declared in the form

A�� 	���% $!��& ?� 2���"��

The data actually relates to the average monthly temperatures in the Mediterranean,
beginning with January = 15ÆC in location 	���% $&.

Table 5.3: Average monthly temperatures

15 15 16 19 23 28 30 31 28 24 20 17

In software applications arrays with two or more dimensions can exist in computer
memory. Remembering that computer memory is made up of contiguous memory
locations multi-dimensional arrays can only exist as linear lists.

Here we will only consider 2-dimensional arrays.

5.2.1 2-Dimensional Arrays

A 2-dimensional array or a matrix is a table of 1-dimensional arrays the size of which
depends upon the number of rows and columns.

As an example consider the following data relating to weather information that was
collected during a school outdoor project week, which is stored in a 9 x 2 array i.e
18 locations. Data was collected and stored over an eight-day period in the array called
Weather�records as shown in Table 5.4:

© HERIOT-WATT UNIVERSITY

112 TOPIC 5. HIGH LEVEL PROGRAMMING LANGUAGE CONSTRUCTS 1

Table 5.4: Dimensional array - Weather� records

Data 26/05/04 Site 1

Inside forest

Site 2

Outside forest
Maximum temperature (ÆC) 12 13

Minimum temperature (ÆC) 6 7

Wet temperature (ÆC) 10 11

Dry temperature (ÆC) 12 13

Humidity (%) 67 74

Soil temperature at 2cm (ÆC) 11 11

Soil temperature at 10cm (ÆC) 10 9

Rainfall (mm) 0.1 0.25

Light intensity (lux) 540 8440

The array now requires two index numbers to access any element.

Each data item or element of the array can be uniquely identified using two index
numbers, the same as in a spreadsheet, by looking at the cell reference - Row number
and Column number. In the array 6���%�����'��:�, the array name and (Row, Column)
values make up the cell reference.

For example, the value *, representing the temperature at ���� �, is in location
6���%�����'��:� �!$&.

Consider now a more general example. In Figure 5.4 an array of dimensions 3 x 4 called
0����� has been created containing the first 12 prime numbers.

" % �
� "" "� "�
"& %� %& �"

' ! " 6

'

!

"

���	
������-

���
����-

Figure 5.4: 2-Dimensional array

The value �� is stored in location 0����� �!(&

Location 0����� $!$& contains the value �

© HERIOT-WATT UNIVERSITY

5.2. ARRAYS 113

Exercise

Check and verify the following statements:

The location 0����� $!�& contains the value (

The location 0����� �!�& contains the value �(

The value (� is stored in location 0����� �!(&

The value �# is stored in location 0����� �!$&

Exercise

With reference to the array Weather�records (Table 5.4):

Q4: What is the location of the value 67?

Q5: What value is held in location(0,1)?

Arrays Interaction for Two-Dimensional Arrays

There is an interactivity online to demonstrate two-dimensional arrays

5.2.2 Implementation of a 2-dimensional array

We will consider the following actions on 2-dimensional arrays:

1. initialise the array

2. read data into the array

3. output the contents of an array

4. search the array for data items

5. sort data items

5.2.3 Initialising an array

Recall that initialising an array simply means setting all the array elements to zero, null
or a specified value. For small arrays this can be done by assigning the data to the array
locations. For a 2 x 3 array called @��� this would be:

@��� $!$& � $
@��� $!�& � $
@��� $!�& � $
@��� �!$& � $
@��� �!�& � $
@��� �!�& � $

For larger arrays this is best achieved by implementing a loop structure in the
programming language.

For a 2-dimensional array, two such loops would be required, one to deal with the rows
and the other for the columns.

© HERIOT-WATT UNIVERSITY

114 TOPIC 5. HIGH LEVEL PROGRAMMING LANGUAGE CONSTRUCTS 1

For example to initialise a 6 x 6 array called ������� the following general algorithm can
be employed that uses two ��� loops, since the array boundaries are known:

�� 5�� ��;���:�� � $ �� �
�� 5�� ��
����2�:�� � $ �� �
(� ������� ��;���:��!��
����2�:��& � $
,� ���� ��
������:��
�� ���� ��;�2�:��

Exercise

In a programming language, code a program to initialise the 2-dimension array �������
using the algorithm below.

�� 5�� ��;���:�� � $ �� �
�� 5�� ��
����2�:�� � $ �� �
(� ������� ��;���:��!��
����2�:��& � $
,� ���� ��
������:��
�� ���� ��;�2�:��

5.2.4 Reading data into an array

Whereas initialisation sets all array elements to be identical, the same method can be
used to input data. For example in the previous 3 x 4 array example called Primes we
can input the prime values into the array using the following algorithm:

�� 5�� ��; � $ �� �
�� 5�� '�
��� � $ �� (
(� 0���� ��;!)�
��& � 2����)�
�� C� � (� � �� �(�� �# �(�# (�U
,� ���� '�
���
�� ���� ��;

Exercise

Code a program to input data into the 2-dimension array 0���� using the algorithm
below.

�� 5�� ��; � $ �� �
�� 5�� '�
��� � $ �� (
(� 0���� ��;!)�
��& � 2����)�
�� C� � (� � �� �(�� �# �(�# (�U
,� ���� '�
���
�� ���� ��;

When you implement this code you won’t see much happening since data is only being
read into the array. There is no output.

5.2.5 Outputting array data

With a 1-dimensional array there is only one output, namely a linear list. With a 2-
dimensional array, such as Primes, however we would like the output to be in tabular

© HERIOT-WATT UNIVERSITY

5.2. ARRAYS 115

form showing the data in rows and columns, instead of what would be produced without
any formatting such as:

� � (� � �� �(�� �� �# �(�# (�

The following algorithm, using formatting commands will accomplish this:

�� 5�� ��
��� � $ 7� �
�� 5�� ��; � $ 7� (
(� 0���� 7�� ��;��&= 0���� ��
���! ��;&= K K=
,� ���� ��;
�� 0����
*� 0����
�� ���� ��
���

Lines 1 and 2 are the normal loop structures to access the data.

Line 3 contains formatting to give more spacing between the values. The 7�� function
takes the value ��; on each pass through the loop and by multiplying this by a value,
in this case �, produces uniform spacing of the output. This has been achieved by trial
and error. The semicolon at the end of line 3 suppresses output to a new line.

Lines 5 is required to direct output to a new line once the first row of values have been
output. Line 6 is purely cosmetic to produce a more pleasing result.

The complete Visual Basic program code is shown in Code 5.7:

>����� E��
�'��
P���
P7%�� ���"��� ;�

 �����)�
��� �� � �/:���������
 ����
 �
P��: ������ �%� '������� �
P �
P��)����� �$$, �
P���
A�� 0���� (! ,& ?� 2���"��
A�� ��; ?� 2���"��
A�� ��
��� ?� 2���"��
P2����)�
���
0��)��� ��� ��:�G���
�'8 &
5�� ��
��� � $ 7� �

5�� ��; � $ 7� (
0���� ��
���! ��;& � 2����I�� K�
���� �����)�
���K&

���� ��;
���� ��
���
P>����� ����
��
5�� ��
��� � $ 7� �

5�� ��; � $ 7� (
0�'>������0���� 7�� ��; � �&= 0���� ��
���! ��;&=

���� ��;
0�'>������0����
0�'>������0����

���� ��
���

© HERIOT-WATT UNIVERSITY

116 TOPIC 5. HIGH LEVEL PROGRAMMING LANGUAGE CONSTRUCTS 1

E�: ���

Code 5.7: Formatted output

Figure 5.5 shows sample program output:

Figure 5.5: Program output

You may like to experiment with 7�� values and font sizes to obtain the output that you
prefer.

Extension work

In the Higher Computing course one of the examples was to read the days of the week
into an array called A�
�.

Suppose we want to extend this to hold the dates for a month as well and storing the
results in a 2-dimensional array.

Problem: Create a program that will input the days of the week and also the dates for
the month of 	�
 �$$� and store the results in a 2-dimensional array called ����%. The
output is to be in the form of Table 5.5 :

Table 5.5: Days of the month, May 2005

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

1 2 3 4 5 6 7

8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

© HERIOT-WATT UNIVERSITY

5.3. SUMMARY 117

Exercise

What changes would have to be done to the 	���% program to output dates for the month
of 5������
 �$$�?

5.2.6 Review questions

Q6: Explain the importance of 2-dimensional arrays. By referring to newspapers,
magazines television etc., list five examples where 2-dimensional arrays feature.

Q7: Explain the process of initialising a 3 x 4, 2-dimensional array.

5.3 Summary

The topic has introduced file handling techniques and the concept of 2-dimensional
arrays and their uses in computing.

By the end of this topic you should be aware of the following objectives:

• appreciate file handling techniques such as create, write, read and delete;

• describe the structure and uses of 2-dimensional arrays;

• implement the structures in pseudocode and a high level language.

End of topic test

Q8: Which one of the following statements regarding sequential files is true?

a) They contain text only and access is fast
b) They contain text and graphics but access is slow
c) They contain text only and access is slow
d) They contain text and graphics and access is fast

Q9: For every file that is opened it must also be:

a) Written to
b) Closed
c) Read from
d) Deleted

Q10: A sequential file can be read and written to but not simultaneously. Why is this
case?

© HERIOT-WATT UNIVERSITY

118 TOPIC 5. HIGH LEVEL PROGRAMMING LANGUAGE CONSTRUCTS 1

Q11: Consider the following data that has to be stored in a suitable data structure:

London, Aberdeen, Glasgow, Bath, Portsmouth, Inverness, Dundee, Oxford, Ayr

If the data were to be searched and sorted then the most convenient data structure
would be:

a) 1-dimensional array
b) Sequential file
c) 2-dimensional array
d) None of these

Q12: Information relating to the data has now to be added. To allow for this the most
convenient data structure would be:

a) 1-dimensional array
b) Sequential file
c) 2-dimensional array
d) None of these

Q13: The following questions refer to the 2-dimensional array:

6 9 0 3 1
12 0 4 10 2
5 11 7 15 8

Assuming indexing begins at 0, the array would be declared as:

a) Array(5,3)
b) Array(2,4)
c) Array(4,2)
d) Array(3,5)

Q14: The value 10 is held in location:

a) Array(1,3)
b) Array(2,4)
c) Array(3,1)
d) Array(4,2)

Q15: The location Array(2,3) contains the value:

a) 4
b) 7
c) 10
d) 15

Q16: Why are arrays initialised?

Q17: It is impossible to have arrays with more than two dimensions.

a) True
b) False

© HERIOT-WATT UNIVERSITY

119

Topic 6

High level programming language
constructs 2: Data structures

Contents

6.1 The stack . 120

6.2 Implementation of a stack . 123

6.3 The queue . 124

6.4 Implementation of a queue . 127

6.5 Review questions . 128

6.6 Records . 128

6.7 Implementation of a record . 129

6.8 Review questions . 140

6.9 Summary . 140

Learning Objectives

After studying this topic, you should be able to:

• Describe and exemplify the following data constructs:

– stack, queue and record

120
TOPIC 6. HIGH LEVEL PROGRAMMING LANGUAGE CONSTRUCTS 2: DATA
STRUCTURES

This topic introduces two important dynamic data types, namely the stack and the queue
and discusses their uses in computing. Further file handling techniques are covered with
specific reference to the data structure called a record.

Static data structures, like arrays have a fixed size in memory. Their size is dependent
upon the amount of data that they store. Dynamic data structures however can increase
and decrease in size during the execution of a program. Two such data structures,
important in computing are the stack and the queue, often used in programming
languages for the temporary storage of data. They can be considered as special cases
of linear lists or 1-dimensional arrays.

6.1 The stack

The stack is an extremely important data structure in the workings of a computer.

The stack is useful where a situation calls for the most recent item to be accessed
such as in programming where procedures are called. Each call is placed on the
stack pending processing. They are also used to store the code produced during
the compilation of high level languages and also to store the intermediate results of
calculations. When a running program is interrupted the status of the program and the
contents of all the registers are stored on top of a stack.

A stack may be represented in computer memory as a 1-dimentional array with the
bottom at a fixed location and a variable stack pointer to the current top location which
is movable. The stack pointer is a special register that is updated each time the contents
of the stack changes.

Data elements can be added or deleted only from the top of the stack, akin to a real pile
of plates or coins. Figure 6.1 illustrates the concept:

!
�	
�	����'	�
���
�

(
��
�	
�	����'	�
���
�

�
�����
��	�
�
��
�
����
��

Figure 6.1: Representation of a stack

Customarily a stack has two operations associated with it:

1. Push: an item is added to the top of the stack, increasing the stack size by 1.

2. Pop: the top item is taken from the stack, decreasing the stack size by 1.

© HERIOT-WATT UNIVERSITY

6.1. THE STACK 121

Examples

1. Suppose the following Push operations were performed with variables A, B and C.
Figure 6.2 illustrates the situation:

����'

;

�)��*	�
)��*	(
)��*	�

Figure 6.2: Stack operations

If you then did three 0���, you would retrieve the variables in the order:

� I ?

2. Consider the integers �*!��!+!�� ��: ��. Pushing them into a stack in the order
given would produce:

1

//

!"

!7

"8

#����������

;����
��������

If the number 35 is to be added to the list then it is pushed onto the top of the stack, the
situation now looks like:

1

//

!"

!7

"8

#����������

;����
��������

6/

������$���������
�������
��������

Using this system the last number in is always the first number out. A stack is therefore
called a LIFO structure (Last In First Out).

© HERIOT-WATT UNIVERSITY

122
TOPIC 6. HIGH LEVEL PROGRAMMING LANGUAGE CONSTRUCTS 2: DATA
STRUCTURES

Exercise 1

Consider the following stack sequence:

!8

7

69

!8

11

7

69

!8

7

69

7

69

����
��������

Explain the stack operations in terms of push, pop and pointer changes.

Stack underflow

In Exercise 1, if a further two pop operations were executed, the top of stack would
become less than the bottom of the stack. The stack is now empty. Attempting any
further pop operations before any new data have been pushed onto the stack is an error
known as stack underflow. Any stack operations should test whether a further pop
would produce stack underflow and report an error if necessary.

Stack overflow

As a stack size is usually limited, this may produce a stack overflow if the maximum
size is exceeded. As with stack underflow it must never be allowed to happen otherwise
termination of a computer program or application will occur.

The use of recursion imposes significant overheads on stack manipulation, in some
cases leading to stack overflow. The LOGO teaching language relies heavily on
recursion as does nested procedure and subroutine calls during program execution.

A number of computer languages are stack-oriented where they use the stack for basic
arithmetic operations and temporary storage of variables. Declarative and event-driven
languages are prime examples.

Exercise 2

Q1: Given the input stream A, B, C, D, E, F write down the sequence of stack
operations (Push for stack, Pop for unstack) which would produce the output stream
C, B, D, E, F, A

Q2: For each of the six data items 1, 2, 3, 4, 5, 6 on the input stream, which of the
following permutations are possible output streams using a stack?

1. 1, 2, 3, 4, 5, 6

2. 2, 4, 3, 6, 5, 1

3. 1, 5, 2, 4, 3, 6

4. 4, 2, 1, 3, 5, 6

5. 1, 2, 6, 4, 5, 3

6. 5, 2, 6, 3, 4, 1

© HERIOT-WATT UNIVERSITY

6.2. IMPLEMENTATION OF A STACK 123

6.2 Implementation of a stack

The following algorithms illustrate the two processes of pushing and popping data
items. In each case testing for the conditions of stack full (overflow) and stack
empty (underflow) must be implemented otherwise the running program may terminate
abnormally.

Push a new item on to a stack

2� ���'8�������� 1 	������ �%��
>����� P���'8 >)���
�;P

E
��
���'8�������� � ���'8�������� � �
���'8 ���'8��������& � A��� ����

E�:2�

Pop an item off the stack

2� ���'8�������� O 	������ �%��
>����� P���'8 G�:���
�;P

E
��
A��� ���� � ���'8 ���'8��������&
���'8�������� � ���'8�������� / �

E�:2�

Extension Work: Reverse Polish notation

If you look at some modern calculators on sale today many do not have an ’=’ sign
button. Neither do computers! Arithmetic expressions are worked out in a logical
fashion using Reverse Polish, a name derived from Jan Lukasiewicz who was a Polish
mathematician. The stack is ideally suited to this form of calculation.

Consider the simple addition of the two integers 5 and 7 to give 12.

In a simple calculator you would perform the steps: � � � �

In a graphics calculator the steps would be: � � �

The latter expression is in Reverse Polish, also referred to as postfix notation since the
operator (+) comes after the data. In terms of stack operations it will look like:

0��% �
0��% �
0��% �

The expression is read from left to right and once an operator is pushed on to the stack
the calculation is performed. The top of the stack will always contain the result of the
arithmetic calculation as shown in Figure 6.3 :

© HERIOT-WATT UNIVERSITY

124
TOPIC 6. HIGH LEVEL PROGRAMMING LANGUAGE CONSTRUCTS 2: DATA
STRUCTURES

/

/

8

/

<

8

!"

�	�$�/ �	�$�8 �	�$�< ����!"

Figure 6.3: Stack operation

Now consider the more complex expression * � �& � � / �&

Using the rules of precedence i.e. brackets, exponentiation, multiplication and division,
addition and subtraction, the sequence would be as follows:

0��% *
0��% �
0��% � �� "�)� + �� ��� �� ���'8
0��% �
0��% �
0��% / �� "�)� , �� ��� �� ���'8
0��% � �� "�)� (� �� ��� �� �%� ���'8

Thus the expression * � �& � � / �& in Reverse Polish is: * � � � � / �

Convert the following expressions into Reverse Polish:

Q3: � � �&<'& � : / �&

Q4: # � � / (& � , � �&<�

6.3 The queue

A queue is also a 1-dimensional array (linear list) similar in structure to a stack but data
items are inserted and deleted at different ends. Using this system the first number in
becomes the first number out. It is therefore referred to as a FIFO structure (First In First
Out).

Two pointers are used, one to point to the head of the queue and another to point to the
end of the queue.

© HERIOT-WATT UNIVERSITY

6.3. THE QUEUE 125

Consider the numbers ��! ��! +! ��! �*. Putting them into a queue the list now
becomes:

1

//

!"

!7

"8

=��������	�	�

3�������	�	�

If the number 35 is to be added then it joins the end of the queue (pushed).

The queue now becomes:

1

//

!"

!7

"8

=��������	�	�

3�������	�	�6/

������$���������
����	�	���������

If a data item has to be removed from the queue then it is popped from the head of the
queue. In this case if 12 is popped then the situation becomes:

1

//

!7

"8

=��������	�	�

3�������	�	�6/

������$������$���
����	�	���������

An important aspect to realise here is that the data itself does not move but merely the
pointers to the head and end of the queue.

© HERIOT-WATT UNIVERSITY

126
TOPIC 6. HIGH LEVEL PROGRAMMING LANGUAGE CONSTRUCTS 2: DATA
STRUCTURES

Consider the following sequence:

7

11

7 7

11

7

����� ������	�$�11 ���������!8 ���������69

!8

69

!8

69

11

69

�������������

������������

1. 88 is added to the end of the queue(pushed);

2. Rear pointer = Rear pointer + 1;

3. 17 is removed from the queue (popped);

4. Start pointer = Start pointer + 1;

5. 39 is removed from the queue (popped);

6. Start pointer = Start pointer + 1;

Suppose now that 27 and 13 are now added to the queue. At this point the rear pointer
is referencing the end of the queue. We now want to add the value 10.

The situation would be:

%&

''

((((

��
����������

)�
���������
*+

%&

*+

*,

��
����������

)�
���������

��-���	 �*,������� ��.����

There are no free locations at the end of the array, but at the start of the array there are
free locations. The value 10 can be added there, with pointers updated appropriately.
The array is now treated as a circular queue, with the first element following on from
the last element in the array.A circular queue arrangement is such that when there is
no space at the bottom of the queue you simply start again at the top. The rear pointer
now indicates the item 10 which is now at the end of the queue, while the start pointer
is unchanged.

With this organisation of start and rear pointers the representation of an empty queue
and the detection of when the queue becomes full is tricky. Clearly, when the start

© HERIOT-WATT UNIVERSITY

6.4. IMPLEMENTATION OF A QUEUE 127

queue contains a single item, the start and rear pointers should coincide and refer to
the single item in the queue. Thus the empty queue is represented by the rear pointer
being one less than the start pointer, so that when the first item is added the pointers
coincide. However, the same position could be reached by repeatedly adding items to
the queue (for example, by adding another item after the 10 in the previous queue). So
a full queue and an empty queue would be indistinguishable. A common way out of this
difficulty is to have the position reached after the value 10 has been added to represent
a full queue. This means that one location of the array will always be unused and the
maximum number of items that can be stored in the queue is one less than the size of
the array.

Queues are used when multiple printing jobs have to be processed and also during
the scheduling of tasks in a multitasking environment. It is also an important structure
in event-driven languages where events are placed in a queuing system to wait being
processed.

6.4 Implementation of a queue

The following algorithms illustrate the addition of an item to the end of a queue and the
removal of an item from the head of a queue. It is assumed that the queue is stored
in an array with identifier ’queue’ and that the array subscripts run from 1 to Maximum
(inclusive).

Adding an item to the queue

2� ���� � 	������ 7%��
���� � �

E
��
���� � ������

E�:2�
2� ���� � �����/� >� ���� � 	������ ��: ����� � �& 7%��
>����� PV���� 5�

P

E
��
3���� ����& � :���

E�:2�

Removing an item from a queue

2� ���� � �����/� >� ���� � 	������ ��: ����� � �& 7%��
>����� PV���� E���
P

E
��
A��� � V���� �����&

E�:2�
2� ����� � 	������ 7%��
����� � �

E
��
����� � ����� � �

© HERIOT-WATT UNIVERSITY

128
TOPIC 6. HIGH LEVEL PROGRAMMING LANGUAGE CONSTRUCTS 2: DATA
STRUCTURES

Notice that if the full or empty queue conditions are satisfied, the start and rear
pointers have been corrupted. More involved programming is required to maintain their
consistency if the queue is required to ignore attempts to add items when it is full or
remove items when it is empty.

An alternative implementation would maintain the rear pointer referring to the free space
after the queue, so that the empty queue would be represented by the start and rear
pointers being equal, and the full queue would be represented by the rear pointer being
one less than the start pointer, taking into account any wrapping round. The insertion
algoritm would change to increment the rear pointer after the time had been copied into
the array.

6.5 Review questions

Q5: Describe fully the workings of a stack and explain why it is an important structure
in computing?

Q6: Describe fully the workings of a queue and explain why it is an important structure
in computing?

6.6 Records

Whereas an array can contain variables of the same type a record can contain different
types and this makes them more complex to manipulate. Records are associated with
databases and the following fields as shown in Table 6.1 are typical:

Table 6.1: Record fields

Field Type

Surname String

FirstName String

Sex Character
Address String

PostCode String

Telephone String

A record can be therefore be regarded as a 2-dimensional array of data of different types
and Table 6.2 illustrates this, showing three records:

© HERIOT-WATT UNIVERSITY

6.7. IMPLEMENTATION OF A RECORD 129

Table 6.2: Records

Surname First name Sex Address 1 Post code ’Phone
TOD Andy M 35 Brookside Drive TY7 8UK 225 3625

BOYD Mary F 27 The Grange OB7 RF12 335 2901

BELL Charles M 2 Bellside,
Hunterstown

HT5 WA 3 213 1157

Each record is terminated by a CR, LF (indicated by *) and EOF control codes. In
computer memory the records will be stored similar to the following:

Record1 * Record2 * Record3 * Record4 * Record5 * EOF

Records can either be fixed or of variable length. There are advantages and
disadvantages of each but for this particular topic we will only deal with fixed length
records.

When allocating storage space, therefore the filing system must know the number of
bytes in advance. For example, taking the fields in Table 6.1 we can roughly estimate
the number of bytes for each field as shown in Table 6.3:

Table 6.3: Field lengths

Field Bytes

Surname 25
FirstName 15
Sex 1
Address 50
PostCode 10
Telephone 14

This produces a record length of 115 bytes. Even if the information in a record did not
total 115 bytes, it would be padded out with characters to that value. A file containing
100 such records would equate to around 10k to 12k allowing for space between blocks
of records on backing store.

Exercise

Using your own personal data estimate the record size you will require based on
Table 6.3.

6.7 Implementation of a record

A record is the smallest piece of information that can be manipulated using a random
access file. Like a sequential file random access files store information as characters,
one byte per character. Numbers however are stored in their native format.

Although random access files are less efficient in using disc space they do provide faster
access to the information than sequential files since each record is of equal length and

© HERIOT-WATT UNIVERSITY

130
TOPIC 6. HIGH LEVEL PROGRAMMING LANGUAGE CONSTRUCTS 2: DATA
STRUCTURES

can be located by its index number.

Another important aspect is that random access files can be read from and written to
simultaneously.

In Visual Basic a record is defined using a Type statement that takes the form:

7
��)��7
��
H�����
�� ?�)��7
���
H�����
�� ?�)��7
���
��������������������

E�: 7
��

where)��7
�� is the record name and variables represent the fields.

This means that custom data types can be created by the user and manipulated in
programs just like normal variables.

As an example, for the record shown in Table 6.2, the following Type statement would
be used where the record type is called �����:

7
�� �����
������� ?� �����" � ��
5�������� ?� �����" � ��
��� �� �%��
?::���� ?� �����" � �$
0��� '�:� ?� �����" � �$
0%��� ?� �����" � ��

E�: 7
��

In the 7
�� statement, ����� is the record name, each field is multiplied by a value to
indicate its total length. Adding the field values gives a maximum record length of 116
characters or 116 bytes. Alternatively Visual Basic will do the calculation for you using
the function @�� & which returns the length of the entire record.

The following statement opens a random access file both for reading from and writing
to:

>��� K5�
�����K 5�� ���:�� ?� Q�%����
������ @�� � @��)�����
�&

where �%����
������ is a value assigned by Visual Basic to the file during read/write
operations, and the ’ Len =’ is part of the Open statement, indicating to Visual Basic the
length of a record in the file, and the ’Len(variable)’ is a function returning the length of
a record referred to by ’variable’.

For example to open a data file named Books.dat that is in a folder called 	
 A�'������
on the hard drive, the statement would be:

>��� K'���
 :�'�������I��8��:��K 5�� ���:�� ?� Q� @�� � @�� I��8�&

© HERIOT-WATT UNIVERSITY

6.7. IMPLEMENTATION OF A RECORD 131

Example : Worked example

This example will take you, step by step through the formalities of writing to and reading
from a random access file in Visual Basic.

The following algorithms summarise the steps involved:

Create/write random file; use of the PUT statement

�� '����� ��'��:���� ��: ���
:�
�� :����� ��'��:���� �� 7
��
(� :�'
���)�����
� �� �
�� ��'��:���� �� ����� :���
,� '����� ��
� ����" >0E� ���������
�� ����"�)�
��� �� ���
:�
*� ;���� :��� �� ��
� ����" 0G7 ���������
�� :���
�
 ��
�
+� '
��� ��
�

Read from an existing random file; use of the GET statement

�� >��� ��
�
�� ���: ��'��:� ����" FE7 ���������
(� :���
�
 ��'��:�
,� '
��� ��
�

The algorithms may be implemented in Visual Basic.

For this example we will use a file called I��8��:�� and create some records.

Create/write random file

1. The record name is I��8�

2. The record I��8� is declared with its variables :

7
�� I��8� P'����� ��'��: �
��
7��
� ?� �����" � ,$ P;��% ���
:� ��: ��W��
?��%�� ?� �����" � ($
2�I� ?� �����" � ��
0��'� ?� ������'

E�: 7
��

3. The type variable is then declared.

A�� I��82��� ?� I��8�

4. The file is opened (created if it does not exist):

�%����� � 5���5�
� &

>��� KI��8��:��K ��� ���:�� ?� �%����� @�� � @�� I��82���&

The channel number is assigned automatically by Visual Basic using the inbuilt
function 5���5�
� &.

5. Values are ssigned to the variables as follows:

© HERIOT-WATT UNIVERSITY

132
TOPIC 6. HIGH LEVEL PROGRAMMING LANGUAGE CONSTRUCTS 2: DATA
STRUCTURES

I��82����7��
� � KF����
 >
: 	��K
I��82����?��%�� � K������ 0����
�K
I��82����2�I� � K$/�*(/���$#/�K
I��82����0��'� � +�#�

6. The record is written to the file

0�� Q�%�����! �! I��82���

The value 1 after �%����� represents the optional record number. If it is omitted
then Visual Basic will store the data at the current record’s position. If a record
exists at that specific location, it will be overwritten. The position of a record will
be indicated by a variable called 0������ in the complete programs that follow.

7. Display records. This can be done using a 0�'���� ��� called 0�'>����� and is
only done to show that the data has been read in correctly and that the program is
working;

0�'>������0���� I��82����7��
�=7�� &=I��82����?��%��=7�� &=

I��82����2�I�=7�� &=I��82����0��'�

8. The file is closed. This will save the data to the file I��8��:��:

�
��� Q�%�����

Read from an existing file

1. If the file I��8��:�� has been previously saved it may be opened as before:

�%����� � 5���5�
� &

>��� KI��8��:��K ��� ���:�� ?� �%����� @�� � @�� I��82���&

2. To read and display the records, the following code is used where the variable
0������ accesses each record one at a time and 7����'��:� is set to the number
of records in the file:

5�� 0������ � � �� 7����'��:�
F�� Q�%�����! 0������! I��82���
A���
�
 ��'��:�

���� 0������

3. The files is closed as before:

�
��� Q�%�����

The complete program listing is shown in Code 6.1:

>����� E��
�'��
P	>AG@E �>AE
0��)��� 7
�� I��8�
7��
� ?� �����" � �$
?��%�� ?� �����" � ($
2�I� ?� �����" � ��

© HERIOT-WATT UNIVERSITY

6.7. IMPLEMENTATION OF A RECORD 133

0��'� ?� ������'

E�: 7
��
P���
P0��"��� �� ������
��� ��'��:� �
P �
P��)����� �$$, �
P���
0��)��� ��� ��:�E?A��
�'8 &
�%����� � 5���5�
� &
>��� K'�XI��8��:��K 5�� ���:�� ?� �%����� @�� � @�� I��82���&
7����'��:� � @>5 �%�����& < @�� I��82���& P5��: ������ �� ��'��:�
��'��:J��:��"
5�� 0������ � � 7� 7����'��:�
F�� Q�%�����! 0������! I��82���
>�������'��:
���� 0������
E�: ���

0��)��� ��� ��:6�27E��
�'8 &
A�� ����� ?� 2���"��
�%����� � 5���5�
� &
0������ � �
>��� K'�XI��8��:��K 5�� ���:�� ?� �%����� @�� � @�� I��82���&
I��82����7��
� � KF����
 >
: 	��K
I��82����?��%�� � K������ 0����
�K
I��82����2�I� � K$/�*(/���$#/�K
I��82����0��'� � +�#�
0�� Q�%�����! 0������! I��82���
��'��:J��:��"
>�������'��:
0������ � 0������ � �
I��82����7��
� � KJ�; �� �� � "��:����K
I��82����?��%�� � K?
�� 7��'%����%K
I��82����2�I� � K$/�*(/�(�,$/BK
I��82����0��'� � �+�##
0�� Q�%�����! 0������! I��82���
>�������'��:
0������ � 0������ � �
I��82����7��
� � KJ���
�
�K
I��82����?��%�� � K	�'%��
 0�
��K
I��82����2�I� � K$/�#�/+,(��/$K
I��82����0��'� � �$��
0�� Q�%�����! 0������! I��82���
>�������'��:
�
��� Q�%�����
E�: ���

��� >�������'��: &
0�'>������0���� 7���R I��82����7��
�&= 7�� ��&=

© HERIOT-WATT UNIVERSITY

134
TOPIC 6. HIGH LEVEL PROGRAMMING LANGUAGE CONSTRUCTS 2: DATA
STRUCTURES

7��� I��82����?��%��&= 7�� �$&= 7���R I��82����2�I�&= 7�� ��&=
I��82����0��'�=
0�'>������0���� K K

E�: ���

��� ��'��:J��:��" &
0�'>������0���� K727@EK= 7�� �+&= K?G7J>�K= 7�� ��&= K2�I�K=
7�� �,&= K0�2�EK
0�'>������0���� K K

E�: ���

0��)��� ��� ��:EB27��
�'8 &
�
��� Q�%�����
E�:
E�: ���

Code 6.1: Record manipulation

Program notes

This is the simplest implementation of a random access file to process records. In
the program the three records are written to the file ���I��8��:�� by executing the
'�:6���� & subroutine. Normally no output would appear since the file is being created
or data written to the file. To make sure the subroutine is working the >�������'��:
subroutine is called and this prints the records to the 0�'���� ���, as the variable
0������ increases through 1 to 3. The subroutine ��'��:J��:��" outputs a title each
time the records are displayed.

In the records output statement the 7���R function is used to clip unwanted spaces from
the records as they are printed to the 0�'���� ���.

To read the contents of the file, the number of records must be known. This is done by
the statement:

7����'��:� � @>5 �%�����& < @�� I��82���&

where LOF is the length of the file.

A screenshot is shown in Figure 6.4:

© HERIOT-WATT UNIVERSITY

6.7. IMPLEMENTATION OF A RECORD 135

Figure 6.4: Output of records

Pressing the "Read file" and "Write file" buttons give identical output, as shown.

Exercise

Code the above program and run it a few times to acquaint yourself with the manipulation
of records. When you are happy with it:

1. Remove the output statement from the cmdWrite function

2. Modify existing data by adding records of your own and testing the program.

Example : Extension exercise

Although the above program illustrates the basics of record manipulation using a random
access file, it not at all flexible. The program has to be modified to input further data or
change the data already present. Also there should be the option of choosing which file
to process as being an input parameter to the program.

The following exercise implements these enhancements and introduces some extra
features of Visual Basic.

A program has to be created that inputs information relating to the members of a local
golf club. The data is to be stored as a file containing records of each member, the data
being input by the user during program execution.

Use a random access filing system to store the data. To input each record, a form will
be used with a text box to represent each field. Because the output might be quite large
a picture box might be insufficient to display the data. Also we wish to separate output
from input so that the form is not cluttered. A second form will therefore be used for
output.

1. The following record structure will be used:

7
�� 	������%��

© HERIOT-WATT UNIVERSITY

136
TOPIC 6. HIGH LEVEL PROGRAMMING LANGUAGE CONSTRUCTS 2: DATA
STRUCTURES

������� ?� �����" � ($
5�������� ?� �����" � ��
	�������� ?� �����" � ��
J��:�'�� ?� 2���"��

E�: �
��

The record name of type 	������%�� is 	�����2���

2. The project form is created as shown in Figure 6.5. This contains four labelled text
boxes representing the field names and three command buttons. Sample input is
also shown.

Figure 6.5: Record input form showing data

3. Each text box must now be assigned to each field. The format for this statement
is:

��'��:�����5��
: � 7��5��
:�7���

For our Membership record the five statements will be:

	�����2����������� � 7����������7���
	�����2����5�������� � 7��5���������7���
	�����2����	�������� � 7��	���������7���
	�����2����J��:�'�� � 7��J��:�'���7���

4. The file is now opened using the statement:

>��� K'��	�������:��K 5�� ���:�� ?� Q�%����� @���@�� 	�����2���&

5. Data is entered into the text boxes and written to the file using the 0G7 statement.

© HERIOT-WATT UNIVERSITY

6.7. IMPLEMENTATION OF A RECORD 137

6. To display the contents of the file containing the records a second form is added
to the project. This is achieved by choosing 0��-�'� from the menu followed by
?:: 5���. This form is called >�����. The data is displayed using the statements:

>������0���� 	�����2�����������
>������0���� 	�����2����5��������
>������0���� 	�����2����	��������
>������0���� 	������%���J��:�'��

7. The file is closed using �
��� Q�%�����

The complete code is shown in Code 6.2.

>����� E��
�'��
A�� 	�����2��� ?� 	������%��
A�� ��>�	������ ?� 2���"��
A�� 5�
����� ?� �����"
A�� ��'��:@�� ?� 2���"��
A�� 7���
��'��:� ?� 2���"��
A�� �%����� ?� 2���"��

P�����������������������������������
P��'��: ������
����� ���"��� � �
P �
PA�'����� �$$, �
P�����������������������������������

0��)��� ��� 5����@��: &
P����������������������������������
P >0E� 52@E 5>� 6�272�F �
P����������������������������������
��'��:@�� � @�� 	�����2���&
�%����� � 5���5�
�
5�
����� � 2����I��R KE���� ��
� ����K&
>��� 5�
����� 5�� ���:�� ?� �%����� @�� � ��'��:@��
��>�	������ � @>5 5�
�����&X��'��:@��
E�: ���

0��)��� ��� ��:?::��'��:��
�'8 &
P�������������������������������������
P @>?A A?7? 5�>	 7EB7 I>BE� 7> 52@E �
P�������������������������������������
F����'��:
0�� Q�%�����! ��>�	������! 	�����2���
��>�	������ � ��>�	������ � �
7����������7��� � K K
7��5���������7��� � K K
7��	���������7��� � K K
7��J��:�'���7��� � K K
7�������������5�'��

© HERIOT-WATT UNIVERSITY

138
TOPIC 6. HIGH LEVEL PROGRAMMING LANGUAGE CONSTRUCTS 2: DATA
STRUCTURES

E�: ���

0��)��� ��� ��:A���
�
5�
���
�'8 &
P���������������������������
P A2�0@?4 �>�7E�7� >5 52@E �
P���������������������������
A�� ����� ?� 2���"��
J��:��"
5�� ����� � � 7� 0������
F�� Q�%�����! �����! 	�����2��� P���: ��'��: ���� ��
�
>�������'��:�
���� �����
>�����5����0����
>�����5����0����
>�����5����0���� K�
��� ;��:�; �� '�������K
E�: ���

��� F����'��: &
	�����2����������� � 7����������7���
	�����2����5�������� � 7��5���������7���
	�����2����	�������� � 7��	���������7���
	�����2����J��:�'�� � H�
 7��J��:�'���7���&
E�: ���

0��)��� ��� J��:��" &
>�����5�����%�;
>�����5����0���� K�������K= 7�� �+&= K5���� ����K= 7�� (*&=
K	������%�� ������K= 7�� *$&= KJ��:�'��K

>�����5����0����
E�: ���

��� >�������'��:� &
>�����5����0���� 7���R 	�����2�����������&= 7�� �+&=
7���R 	�����2����5��������&= 7�� (+&=7���R 	�����2����	��������&=
>�����5����0���� 7�� *,&= 7��� 	�����2����J��:�'��&=
>�����5����0����
E�: ���

0��)��� ��� ��:E�:��
�'8 &
�
��� Q�%�����
E�:
E�: ���

Code 6.2: Membership program

Program notes

When you run the program you will be prompted to input a file name. If the file
does not exist it will be created. The cursor will reside in the ������� box ready for
input. Input a few records, each time pressing the ?:: ��'��: button. By pressing the
A���
�
 ��'��:� button all the records that have been input will be diplayed on the

© HERIOT-WATT UNIVERSITY

6.7. IMPLEMENTATION OF A RECORD 139

output form. By closing this form more records may be added until the file is closed and
the program terminated by pressing the E�: 0��"��� button.

If the program is run again using the same filename no records will be displayed when
the A���
�
 ��'��:� button is pressed. However the information is still contained in the
file and if new records are added, the file will be updated with the new information.

The ��� ��:?::��'��:��
�'8 & code clears the text boxes, calls the F����'��: routine
that assigns the information that is input to the boxes using the 0�� command. Once the
?:: ��'��: button has been activated, focus returns to the ������� box.

The largest chunk of the code deals with the display of the records using the F��
command. The sub procedure J��:��" outputs a heading for the file on the output
form. To activate this form the statement >��5���.�%�; is used The 5�� loop then runs
through each record up to the value dictated by the variable 0������ and prints each on
the output form. The output is performed by the sub routine >��0����'��:� that formats
the output statements using the 7�� function. Finally to remove unwanted spaces from
each record the 7���R function is used. Remember that the records are fixed length
format so some will contain extra "padding" to make up the common length.

A program run is shown in Figure 6.6.

Figure 6.6: Program output showing records

Exercise

You may wish to add a fourth button to the form that will open and display the contents
of an existing file. If you refer to the I��8��:�� program, this should give you help.

0��)��� ��� ��:@��:��
�'8 &
�%����� � 5���5�
� &
��'��:@�� � @�� 	�����2���&
5�
����� � 2����I��R KE���� ��
� ����K&
>��� 5�
����� 5�� ���:�� ?� �%����� @�� � ��'��:@��
7���
��'��:� � @>5 �%�����& < @�� 	�����2���&
>�����5�����%�;

© HERIOT-WATT UNIVERSITY

140
TOPIC 6. HIGH LEVEL PROGRAMMING LANGUAGE CONSTRUCTS 2: DATA
STRUCTURES

5�� 0������ � � 7� 7���
��'��:�
F�� Q�%�����! 0������! 	�����2���
>�����5����0���� 7���R 	�����2�����������&= 7�� �+&=
7���R 	�����2����5��������&= 7�� (+&=
7���R 	�����2����	��������&=
>�����5����0���� 7�� *,&= 7��� 	�����2����J��:�'��&

���� 0������
E�: ���

Code 6.3: Membership program

Exercise 2

Use the data that you produced in the last Exercise and create a record structure in your
programming language.

6.8 Review questions

Q7: What are the differences between a sequential file and a random access file?

Q8: What is a record and why does the filing system require to know its length?

Q9: Estimate the storage required for 100,000 records if each record contains the
information shown. Provide realistic field sizes yourself. Assume all fields contain
information.

• Surname

• First name

• Date of birth

• Age

• Address

• City

• Post code

• Telephone

• Mobile

• e-mail

6.9 Summary

The topic has introduced the dynamic data types, the stack and the queue both of
which are used extensively in computing. File handling techniques were extended to the
discussion and exemplification of records in both pseudocode and a high level language.

By the end of this topic you should be aware of the following objectives:

• describe the structure and exemplification of both a stack and queue and explain
their importance in computing;

© HERIOT-WATT UNIVERSITY

6.9. SUMMARY 141

• describe the structure and exemplification of a record.

End of topic test

Q10: Which one of the following is an example of a static data structure?

a) a procedure
b) a stack
c) a record
d) a queue

Q11: PUSH and POP are procedures used when inserting and deleting items from:

a) an array
b) a sorted list
c) a sequential file
d) a stack

Q12: Stacks and queues have two error situations. They are ������� and �������.

Q13: Which one of the following responses is false:

a) Records and stacks are static data structures
b) Stacks and arrays are dynamic data structures
c) Queues and stacks are dynamic data structures
d) Queues and records are static data structures

Q14: Both stacks and queues are useful structures used during the execution of
programs.

a) True
b) False

Q15: To store 5000 records containing information under the fields name, address and
age would require approximately how many bytes?

a) 250b
b) 250Kb
c) 250Mb
d) Impossible to say

Q16: The following print jobs are held in a queue:

job 1 job 2 job 3 job 4

Front Rear

Which one of the following data structures would be best suited to reverse the elements
of the queue?

a) Stack
b) Another queue
c) 1-dimensional array
d) 2-dimensional array

© HERIOT-WATT UNIVERSITY

142
TOPIC 6. HIGH LEVEL PROGRAMMING LANGUAGE CONSTRUCTS 2: DATA
STRUCTURES

© HERIOT-WATT UNIVERSITY

143

Topic 7

Standard algorithms

Contents

7.1 Searching techniques . 144

7.2 Linear Search . 144

7.3 Binary search . 146

7.4 Implementation of a binary search . 148

7.5 Review questions . 152

7.6 Sorting . 152

7.6.1 Simple sort . 153

7.6.2 Simple sort Implementation . 154

7.6.3 Bubble sort . 157

7.6.4 Bubble sort implementation . 159

7.6.5 Selection sort using two lists . 163

7.6.6 Implementation of selection sort using two lists 164

7.6.7 Summary of three sorting algorithms . 167

7.7 User-Defined module libraries . 168

7.7.1 Creating a module library . 169

7.7.2 Review questions . 172

7.8 Summary . 172

Learning Objectives

After studying this topic, you should be able to:

• Describe and exemplify the following standard algorithms in pseudocode and an
appropriate high level language

– binary search

• describe and compare simple linear and binary search algorithms;

• describe and compare sort algorithms for simple sort, bubble sort and selection
sort in terms of number of comparisons and use of memory;

• describe and exemplify of user-defined module libraries.

144 TOPIC 7. STANDARD ALGORITHMS

In this final topic standard algorithms are revisited in the form of linear and binary
searches that are compared. Sorting techniques are compared under various criteria
and implemented in both pseudocode and a high level language. Finally you will have
the prospect of creating your own module libraries that can be saved and used at any
time in your programming work.

Searching and sorting are two important procedures used in data processing.

Searching is simply finding a ’key’ item by scanning a data list until the search key is
found or it is not in the list. Scanning a telephone directory or index of a book is a search
routine.

Sorting techniques arrange data into some form of order such as numeric, alphabetic
ascending or descending. A deck of playing cards could be sorted in order of suits,
spades, hearts, diamonds, and clubs with the cards in numerical order within the suits,
Ace to King.

7.1 Searching techniques

There are many search techniques available and the two that we will look at are the
linear or sequential search and the binary search. The linear search was introduced to
you in the Higher Computing course and we want to examine the process in a bit more
detail.

7.2 Linear Search

This is a reminder of what a linear search involves.

The linear search is the simplest search method to implement and understand. Starting
with an array of length 10, holding say, 10 integers with a pointer indicating the first item
the user inputs a search key. Scanning then takes place from left to right until the search
key is found, if it exists in the list. Look at the list below:

!7 9 65 87 1/ " "/ 1" // 7'

Suppose the search key is 76.

Starting at array location 0 containing the value 16.

1. The value 16 is compared to the key, 76. Not equal to key so pointer moves on
one place;

2. The value 9 is compared to the key. Not equal so pointer moves on;

© HERIOT-WATT UNIVERSITY

7.2. LINEAR SEARCH 145

3. The value 34 is compared to key. Not equal so pointer moves on;

4. The value 76 compared with key. Success! Key found at position 3 in the list.

!7 9 65 87 1/ " "/ 1" // 7'

A linear search may be represented by the following general algorithm:

� ��� ����: � ��
��
� 2���� ����'% 8�

(0���� �� ����� �
����� ��
���
, A� 6%�
� ��� ��: ��
���& ?�A ��� ����:&
� 2� ����
Y)�
��Z � 8�
 �%��
* ����: � ����
� >����� ������
� �����"�
+ E
��

��8 �� ���� �
����� ��
���
�$ E�: ��
�� @���
�� 2� ��� ����:& �%��
�(8�
 ��� ��
���
�, E�: ��

The linear search is not a bad algorithm for short lists. It is easier to implement than
some of the other methods and the list does not need to be sorted. Indeed it might be
the only method suitable for large, unordered tables of data and files.

However the linear search is not a very efficient strategy since each array element has
to be compared with the search key until a match is found.

Analysis of the linear search

For comparison with other types of search routines the linear search algorithm can be
analysed in terms of the average number of comparisons to find the search key. This
involves some mathematics. You are not required to learn any proofs for this course.

Assume that the search operates on a list of N items.

1 comparison is required to access the 1st item

2 comparisons are required to access the 2nd item

...

N comparisons are required to access the last item.

The average search length for N items is given by the expression:

 � � � � (����������������������������������&<�

© HERIOT-WATT UNIVERSITY

146 TOPIC 7. STANDARD ALGORITHMS

Using mathematics it can be shown that:

 � � � � (����������������������������������&

� � � � �&<�

This means that for a linear search, the average search length approximates to:

N(N + 1)/2N = (N + 1)/2 � N/2

So, for a list of 64 items, the average search length will be approximately 32.

7.3 Binary search

This is a much faster method than the linear search but the data has to be in order.
This search is familiar to everyone who uses a telephone directory! Sometimes called
a binary chop it splits the data list into two sub lists and repeats this process of
splitting until the search key is found, if it exists in the list. This is referred to as
divide and conquer, which features in many sorting algorithms.

Consider the following array of length 10, containing 10 integers in numerical order with
a search key of 82.

!7 "9 65 51 /8 /9 8" 1" 9' 9!

*���>��	� �����$�)��

+�������� ���$������

Choosing a value around the mid point of the list, (57) will produce two sub lists - a left
list and a right list. Now proceed as follows:

1. Compare mid value with key. 82 � 57 so ignore left list;

2. Create new mid location between location 4 and location 9. This location 6 (72).

© HERIOT-WATT UNIVERSITY

7.3. BINARY SEARCH 147

!7 "9 65 51 /8 /9 8" 1" 9' 9!

����*��
>��	�

�����$
)��

+�������� ���$������

3. Now compare new mid value with key. 82 � 72) so ignore left list;

4. Create new mid location between location 6 and location 9. This is location 7 (82).

5. Compare mid value with key. 82 = 82 so key is found at position 7.

!7 "9 65 51 /8 /9 8" 1" 9' 9!

)�����	��

Analysis of the binary search

Recall that in a linear search the number of comparisons made before the search key is
found is given by N/2 where N is the number of data items or length of the list. In the
same way we can apply mathematical rules to find the average number of comparisons
made during a binary search.

It can be shown that there is a logarithmic relationship between the number of
data elements and the number of comparisons required. NB You do not require to
understand logarithmic expressions; merely appreciate why they are used for the sake
of comparison.

Table 7.1 summarises the number of comparisons made for varying numbers of data
elements in a binary search.

© HERIOT-WATT UNIVERSITY

148 TOPIC 7. STANDARD ALGORITHMS

Table 7.1: Binary search comparisons

Number of data elements Number of required
comparisons

Relationship

2 = 21 1 Log22 = 1

4 = 22 2 Log24 = 2

8 = 23 3 Log28 = 3

16 = 24 4 Log216 = 4

32 = 25 5 Log232 = 5

64 = 26 6 Log264 = 6

For a list of N data items the average search length would be Log2N.

So, for a list of 64 items, the average search length will be 6.

7.4 Implementation of a binary search

A binary search can be represented by the following general algorithm:

� ��� ����: � ��
��
� 2���� ����'% 8�

(������
, ��� ������� �� ��::
� ��
��� C@��"�% ��
��� A2H �U
� 2� ����
Y��::
�Z � 8�
 �%��
* ����: � ����
� >����� ������
� �����"�
+ �
��
2� ����
Y��::
�Z O 8�
 �%��
�$
����
�'����� � ��::
� C����'%
��� ���
���U
�� �
��
�� 5�����
�'����� � ��::
� C����'% ��"%� ���
���U
�(G���
 ����: �����

A binary search can be implemented recursively. When it determines whether the
search key lies in the left or right half of the array, it could make a call to search the
appropriate half using the same procedure call.

The binary search algorithm can be implemented in a high level language. The code
shown in Code 7.1 is the full implementation in Visual Basic.

>����� E��
�'��
A�� 0����� ?� 2���"��! �;��� ?� 2���"��! 5�

 ?� 2���"��!

7��� ?� 2���"��! 0������ ?� 2���"��
A�� @��� ��& ?� H������

0��)��� ��� ������:���
�'8 &
P��

© HERIOT-WATT UNIVERSITY

7.4. IMPLEMENTATION OF A BINARY SEARCH 149

PI2�?�4 �E?��J 0�>F�?	 �
P �
PA�'����� �$$, �
P �
P7%�� ���"��� ;�

 ������� � I2�?�4 �E?��J �� �
P�� ����
 %�
:��" �* ����"��� �� ��'��:��" ��:���
P��

����� P	��� ���"��� ���'�:����
0���
����@��� @��� &
I����
�����'% @��� &
E�: ���

0��)��� ��� ����� & P2�����
���)�����
��
0�'@�����
� P��: '
��� ������ �����
0�'����
���
�
0�'0�����
�
0�'����'%��
�
0�'@����0����
0�'����
��0����

E�: ���

0��)��� ��� 0���
����@��� I
��� @��� && P5�

 ����
 ;��% �* ����"���
A�� 5�

 ?� 2���"��
0�'@����0���� K K=
@��� $& � +
@��� �& � ��
@��� �& � ��
@��� (& � ��
@��� ,& � �#
@��� �& � (+
@��� *& � ��
@��� �& � �+
@��� +& � *�
@��� #& � *�
@��� �$& � �,
@��� ��& � +�
@��� ��& � +�
@��� �(& � #$
@��� �,& � #*
@��� ��& � #�
5�� 5�

 � $ 7� �� P>����� ����"���
0�'@����0���� @��� 5�

&=

���� 5�

E�: ���

0��)��� ��� I����
�����'% I
��� @��� &&
A�� ����� ?� 2���"��! 	�::
� ?� 2���"��! 5����@�'����� ?� 2���"��
A�� @���@�'����� ?� 2���"��! ����'%S�
 ?� 2���"��! 0����� ?� 2���"��!

© HERIOT-WATT UNIVERSITY

150 TOPIC 7. STANDARD ALGORITHMS

5���: ?� I��
���
5���: � 5�
��
0����� � $
5����@�'����� � $
@���@�'����� � ��
����'%S�
 � 2����I�� K0
���� ����� �%� ����'% 8�
K&
0�'����'%�0���� ����'%S�

A�
0����� � 0����� � �
0������ � 5����@�'����� � @���@�'�����& < � P5��: ��: ��������
2� @��� 0������& O ����'%S�
 7%��
5����@�'����� � 0������ � �
E
��
@���@�'����� � 0������ / �

E�: 2�
2� @��� 0������& � ����'%S�
 7%��
5���: � 7���
0�'����
��0���� K����'% S�
 K= ����'%S�
= K ����: �� �������� K=

0������
0�'0����0���� K K= 0�����

E�: 2�
@��� G���
 5���: � 7��� >� 0����� 1 ,

2� 0����� 1 , 7%��
0�'����
��0���� K����'% S�
 K= ����'%S�
= K ��� ����: ��
���[K

E�: 2�
E�: ���

0��)��� ��� ��:E�����
�'8 &
E�:

E�: ���

Code 7.1: Binary search

Program notes

The main procedure is I����
�����'% @��� &. The user is prompted to input a search
key. A A� G���
 loop controls the program. The list is divided into two by the variable
0������ being set to the mid position. The search key is compared to the value at
@��� 0������&. If search key is greater then bottom half of list discarded else the top
half is discarded. The variables 5����@�'����� and @���@�'����� are reassigned to
the respective half and the search algorithm is repeated. This continues until the search
is found, or not.

© HERIOT-WATT UNIVERSITY

7.4. IMPLEMENTATION OF A BINARY SEARCH 151

Figure 7.1 shows output from a program run:

Figure 7.1: Output from binary search

Exercise

Download the code and run the program, choosing values:

1. Near the start of the list

2. At the end of the list

3. In the middle of the list

4. That are not in the list

© HERIOT-WATT UNIVERSITY

152 TOPIC 7. STANDARD ALGORITHMS

A summary of the two searching techniques is given in Table 7.2:

Table 7.2: Summary of searches

Linear search Binary search

Is simple to code and implement Is more complex to code

Quite efficient for short length data lists Efficient for any length of data lists

Very slow on large data lists since each
data element has to be compared

Fast on any length of data list since it only
deals with halve sub-lists. Hence the
name binary chop.

Does not require data to be ordered Data has to be ordered.

Average search length is N/2 where N is
the number of data elements.

Search length is log2N

Plays a part in other algorithms such as
finding maximum, minimum and also in
the selection sort

Binary chop is used in fast sorting
routines

7.5 Review questions

Q1: Explain how a binary search works.

Q2: Compare a linear search with a binary search, outlining three main differences.

7.6 Sorting

Sorting is an important process in computing, especially in data processing. Company
records will usually exist in some sort of order, numeric or alphabetic, ascending or
descending, based on a key field in the database. It is difficult to be unaware of sorting
all around you in daily life; bank statements are sorted in numerical order based on date
so the customer can verify the transactions. Telephone directories, book indices, sports
league tables, catalogues of various descriptions, ’Top of the pops’, weather records,
lottery numbers and so on all specify sorting in one form or another.

The examples quoted above are processed as external sorts. This means that the
processing of the files will use external storage devices such as magnetic disc or tape
units since the files will require large amounts of storage for the sorting techniques. In
archiving files, the transaction file is merged with the daily master file to produce a new
master file that is in some sort of order. This process usually starts at the end of a day
and continues overnight in preparation for the following day.

In this topic we will concern ourselves with internal sorts. Here the sorting algorithms
are able to use computer memory (RAM) to order the data contained in fairly small lists.

© HERIOT-WATT UNIVERSITY

7.6. SORTING 153

Three sorting algorithms will be described and compared:

1. Simple sort

2. Bubble sort

3. Selection sort using two lists

In the following descriptions all the algorithms will sort the data, stored in a 1-
dimensional array, into ascending numerical order.

7.6.1 Simple sort

Sorting cannot get any simpler than this one. Consider the initial list of integers as
shown:

8 / 9 7 ! 1 " ' 6 5

,�������
�������

The simple sort works as follows:

1. Starting with the first two items (7, 5) compare them. If the first is greater than the
second, swap them.

2. Compare first item with third (now 5, 9) and if the third is greater than the first,
swap them.

3. Repeat comparing first item with successive values and swap, if required, until end
of list is reached

4. Now repeat the process starting with second item and compare with successive
values until end of list.

5. Continue comparing each item with remaining items until the list is sorted.

Table 7.3 shows the entire process for the first comparisons (pass1). The compared
values are shown in bold and the swaps indicated, where they occur:

© HERIOT-WATT UNIVERSITY

154 TOPIC 7. STANDARD ALGORITHMS

Table 7.3: First pass of simple sort

7 5 9 6 1 8 2 0 3 4 Initial list
Pass 1 7 5 9 6 1 8 2 0 3 4 Compare 7 and 5 - swap

Pass 1 5 7 9 6 1 8 2 0 3 4 Compare 5 and 9 - no swap

Pass 1 5 7 9 6 1 8 2 0 3 4 Compare 5 and 6 - no swap

Pass 1 5 7 9 6 1 8 2 0 3 4 Compare 5 and 1 - swap

Pass 1 1 7 9 6 5 8 2 0 3 4 Compare 1 and 8 - no swap

Pass 1 1 7 9 6 5 8 2 0 3 4 Compare 1 and 2 - no swap

Pass 1 1 7 9 6 5 8 2 0 3 4 Compare 1 and 0 - swap

Pass 1 0 7 9 6 5 8 2 1 3 4 Compare 0 and 3 - no swap

Pass 1 0 7 9 6 5 8 2 1 3 4 Compare 0 and 4 - no swap

0 7 9 6 5 8 2 1 3 4 End of pass 1

Pass 2 0 7 9 6 5 8 2 1 3 4 Start of pass 2

By the end of pass 1 the smallest value has migrated to the start of the list, its correct
position.

Subsequent passes will establish the correct positions for the remaining values.

Exercise

A good way to follow the process of this and subsequent sorts is to use numbered
counters. Manually run through the description and steps in Table 3.11and move the
counters accordingly. Use this to determine the sequence of swaps in the second pass
and subsequent passes.

7.6.2 Simple sort Implementation

The algorithm will require two looping structures; an outer loop that deals with the main
item for comparison and an inner loop that runs through the remaining values that are
compared with the main item. The items are stored in an array called list (N).

�� ��� ����� � $ �� �
�� ��� ����� � ����� � �
(� �� @��� �����& 1 @��� �����& �%��
,� �;��)�
���
�� ��: ��
*� ���� �����
�� ���� �����

The algorithm may be implemented in a high level language. The code shown in
Code 7.2 is a full implementation in Visual Basic.

>����� E��
�'��
A�� 0����� ?� 2���"��! �;��� ?� 2���"��! 5�

 ?� 2���"��! 7��� ?� 2���"��
A�� >���� ?� 2���"��! 2���� ?� 2���"��! ����������� ?� 2���"��
A�� 5
�" ?� I��
���

© HERIOT-WATT UNIVERSITY

7.6. SORTING 155

A�� @��� �*& ?� H������

0��)��� ��� '�:�����
�'8 &

P��
P0��"��� ����
� ���� �
P �
P7%�� ���"��� ;�

 ������� � �2	0@E �>�7 �� �
P�� ����
 %�
:��" �* ���:�� ����"��� ��: ������ �
P �%� ��:���:
��� �� ��'��:��" ��:�� ��"��%�� �
P;��% �%� ������ �� ������ ��: �;���� �
P �
PA�'����� �$$, �
P��
�����
0���
����@��� @��� &
����
������ @��� &
>����������
��
E�: ���

0��)��� ��� ����� &
�;��� � $
0����� � $
����������� � $
���:���W�
0�'@�����
�
0�'@����0����
0�'>�������
�
0�'>������0����
0�'0�����
�
0�'�;����
�
0�'�������������
�
E�: ���

0��)��� ��� 0���
����@��� I
��� @��� &&
A�� 5�

 ?� 2���"��
5�� 5�

 � $ 7� ��
@��� 5�

& � 2�� ## � ��:& � �
0�'@����0���� @��� 5�

&=
���� 5�

E�: ���

0��)��� ��� ����
������ I
��� @��� &&
5�� >���� � $ 7� ��
5�� 2���� � >���� � � 7� ��
����������� � ����������� � �
2� @��� >����& 1 @��� 2����& 7%��
7��� � @��� >����& P�6?0)�
���
@��� >����& � @��� 2����&

© HERIOT-WATT UNIVERSITY

156 TOPIC 7. STANDARD ALGORITHMS

@��� 2����& � 7���
�;��� � �;��� � �

E�: 2�
���� 2����
0����� � 0����� � �

���� >����
E�: ���
0��)��� ��� >����������
�� &
5�� >���� � $ 7� ��
0�'>������0���� @��� >����&=

���� >����
0�'0����0���� 0�����
0�'�;���0���� �;���
0�'������������0���� �����������
E�: ���

0��)��� ��� '�:E�����
�'8 &
E�:

E�: ���

Code 7.2: Simple sort

Program notes

The program uses four procedures, described in Table 7.4:

Table 7.4: Simple sort procedures

Setup Sets up variables and clears output boxes

Populate� List List() Creates 16 random numbers which are stored in
the array List(15).

Simple�Sort List() Two for loops perform the scanning routines and
comparisons of the values. The swap routine is
also present in the procedure.

Output�Results Results are output to 5 boxes: original list, sorted
list, number of passes, number of comparisons
and number of swaps.

Sample output is shown in Figure 7.2:

© HERIOT-WATT UNIVERSITY

7.6. SORTING 157

Figure 7.2: Simple sort output

Analysis of the simple sort

The simple sort is a fairly inefficient algorithm since it runs through every value when
comparing values.

For an array containing 16 integers the number of passes will always be 16. The number
of comparisons will always be 120 but the number of swaps will vary, depending on the
original list.

These values are confirmed when the program is run.

The number of comparisons can be shown mathematically to be N(N - 1)/2

Confirm that this gives the value 120 for an array conatining 16 values.

Allowing for the fact that many comparisons are made the memory overheads for this
type of sort are negligible.

7.6.3 Bubble sort

This is, perhaps the best known of all sorting algorithms and also one of the simplest
to understand and implement. It is very much like the simple sort but, overall is a fairly
inefficient sorting algorithm.

© HERIOT-WATT UNIVERSITY

158 TOPIC 7. STANDARD ALGORITHMS

Consider the initial list of integers as shown:

8 / 9 7 ! 1 " ' 6 5

��%���>��	�

The bubble sort works as follows:

1. Establish the pivot value which is at the top end of the list

2. Starting at the bottom of the list compare first two values (7,5).

3. If first is greater than second then swap.

4. Continue comparing adjacent values up to the pivot value and swap where
necessary.

5. Now move pivot to 2nd top location

6. Repeat process of comparing from start of list and moving pivot down until it is
pointing at the first location.

The list is now sorted.

The bubble sort is so named since the largest element ’bubbles’ to the top during
program execution.

Table 7.5 shows the entire process for the first pass. The compared values are shown
in bold and the swaps are also indicated, where they occur:

Pivot value = 4.

Table 7.5: First pass of bubble sort

7 5 9 6 1 8 2 0 3 4 Initial list
Pass 1 7 5 9 6 1 8 2 0 3 4 Compare 7 and 5 - swap

Pass 1 5 7 9 6 1 8 2 0 3 4 Compare 7 and 9 - no swap

Pass 1 5 7 9 6 1 8 2 0 3 4 Compare 9 and 6 - swap

Pass 1 5 7 6 9 1 8 0 2 3 4 Compare 9 and 1 - swap

Pass 1 5 7 6 1 9 8 0 2 3 4 Compare 9 and 8 - swap

Pass 1 5 7 6 1 8 9 0 2 3 4 Compare 9 and 0 - swap

Pass 1 5 7 6 1 8 0 9 2 3 4 Compare 9 and 2 - swap

Pass 1 5 7 6 1 8 0 2 9 3 4 Compare 9 and 3 - swap

Pass 1 5 7 6 1 8 0 2 3 9 4 Compare 9 and 4 - swap

5 7 6 1 8 0 2 3 4 9 End of pass 1

Pass 2 5 7 1 6 8 0 2 3 4 9 Start of pass 2

© HERIOT-WATT UNIVERSITY

7.6. SORTING 159

By the end of pass 1 the largest value (9) has bubbled to the top of the list, its correct
position.

Subsequent passes will establish the correct positions for the remaining values.

Exercise

Establish the sequence of subsequent passes

7.6.4 Bubble sort implementation

A bubble sort can be implemented by the following algorithm. The items are stored in an
array called
��� �&. Two loops are required; an inner one to run through the values to
allow comparisons take place and an outer loop that begins at a pivot value and iterates
downwards towards the first item.

�� ��� ����� � � / � �� $ ���� /�
�� ��� ����� � $ �� � / �
(� ��
��� �����& 1
��� ����� � �& �%��
,� �;��)�
���
�� ��: ��
*� ���� �����
�� ���� �����

The algorithm terminates when the list is sorted.

The algorithm may be implemented in a high level language. The code shown in
Code 7.3 is a full implementation in Visual Basic.

>����� E��
�'��
A�� 0����� ?� 2���"��! �;��� ?� 2���"��! 5�

 ?� 2���"��! 7��� ?� 2���"��
A�� 5
�" ?� I��
���! ����������� ?� 2���"��
A�� @��� ��& ?� H������

0��)��� ��� ������:���
�'8 &

P���
P0��"��� I���
� ���� �
P �
7%�� ���"��� ;�

 ������� � IGII@E �>�7 �� �
P�� ����
 %�
:��" �* ���:�� ����"��� ��: �
P������ �%� ��:���:
��� ��: �%� ������ �� �
P�;���! '���������� ��: ������� �
P �
PA�'����� �$$, �
P���
����� P	��� ���"��� ���'�:����
0���
����@��� @��� &
I���
������ @��� &
>����������
��
E�: ���

© HERIOT-WATT UNIVERSITY

160 TOPIC 7. STANDARD ALGORITHMS

0��)��� ��� ����� & P2�����
���)�����
��
�;��� � $ P��: '
��� ������ �����
0����� � $
����������� � $
5
�" � 7���
���:���W�
0�'@�����
�
0�'����
���
�
0�'0�������
�
0�'�;�����
�
0�'�������������
�
0�'@����0����
0�'����
��0����

E�: ���

0��)��� ��� 0���
����@��� I
��� @��� && P5�

 ����
 ;��%
A�� 5�

 ?� 2���"�� P�* ���:�� �������
0�'@����0���� K K=
5�� 5�

 � $ 7� ��
@��� 5�

& � 2�� ## � ��:& � �
0�'@����0���� @��� 5�

&=

���� 5�

E�: ���

0��)��� ��� I���
������ I
��� @��� && P����� �%� ���� ���'�:���
A�� >���� ?� 2���"��
A�� 2���� ?� 2���"��
5�� >���� � �� 7� $ ���� /�

5�� 2���� � $ 7� >���� / �
����������� � ����������� � �
2� @��� 2����& 1 @��� 2���� � �& 7%��
7��� � @��� 2����& P�;�� ����
 '�������
@��� 2����& � @��� 2���� � �&
@��� 2���� � �& � 7���
�;��� � �;��� � �

E�: 2�
���� 2����
0����� � 0����� � �

���� >����
E�: ���

0��)��� ��� >����������
�� &
A�� ����� ?� 2���"��
0�'����
��0���� K K= P>����� ����
��
5�� ����� � $ 7� ��
0�'����
��0���� @��� �����&=
���� �����
0�'0������0���� 0�����

© HERIOT-WATT UNIVERSITY

7.6. SORTING 161

0�'�;����0���� �;���
0�'������������0���� �����������
E�: ���

0��)��� ��� ������:���
�'8 &
E�:

E�: ���

Code 7.3: Bubble sort

Program notes

The program uses four procedures as shown in Table 7.6:

Table 7.6: Bubble sort procedures

Setup Sets up variables and clears output boxes

Populate� List List() Creates 16 random numbers which are stored in
the array List(15).

Bubble�Sort List() The value at the top end of the list is taken as the
pivot value. Two loops are required, an outer and
an inner. The outer loop controls the number of
passes through the list starting with the pivot and
working downwards to location 0. The inner loop is
responsible for the comparisons made and any
swaps that have to be performed.

Output�Results Results are output to 5 boxes: original list, sorted
list, number of passes, number of comparisons
and number of swaps.

Sample output is shown in Figure 7.3:

© HERIOT-WATT UNIVERSITY

162 TOPIC 7. STANDARD ALGORITHMS

Figure 7.3: Bubble sort output

Analysis of the bubble sort

The bubble sort is also a fairly inefficient algorithm since it makes an excessive number
of comparisons and is rarely used for serious sorting applications. It is only useful for
small data list up to around 25 items. Its main use is in the teaching of how sorting
algorithms work.

It can be shown that in the worst case (original data is in reverse order) the algorithm
makes N x N comparisons and swaps. It is referred to as an N2 sort. What this means
is that if it takes 5 seconds to sort a list of 1000 items, then to sort a list of 2000 items it
will take 25 seconds.

There are no memory overheads using this algorithm.

Alternative version

There is a more efficient version of the sort that is often cited in literature as the main
bubble sort algorithm. In this version a boolean variable is set to keep track of the
swaps. If no swaps take place then the algorithm terminates. This reduces the time for
the number of passes through the list.

© HERIOT-WATT UNIVERSITY

7.6. SORTING 163

The algorithm is as follows:

�� �
�" � ����
�� :� ;%�
� �
�"
(� �
�" � ��
��
,� ��� '���� � $ �� � / �
�� ��
��� '����& 1
��� '���� � �& �%��
*� �;��)�
���
�� �
�" � ����
+� ��: ��
#� ���� '����
�$�
���

This algorithm produces identical sorting to the simpler version in that the smaller
elements bubble to the start of the list.

Exercise

Modify the program in Code 7.3 to include the above algorithm and run it a few times.

7.6.5 Selection sort using two lists

Compared to the simple and bubble sort methods, the selection sort is probably the
more intuitive in that It seems the natural way to sort data. An enhancement to the
algorithm is to use two lists instead of one. Many external sorts and some internal ones
use two or more lists that are then merged by various methods into a single, ordered
list.

In this selection sort method we are going to use two lists, List A which contains the data
and List B which is empty.

The sort works in the following way:

1. Scan List A using a linear search until the minimum value is found.

2. Place this value in the first location of List B

3. Replace this item with a dummy value

4. Repeat scan for minimum value and place in second location in List B

5. Repeat process until List B contains all values in ascending order and List A
contains dummy values.

Figure 7.4 shows the initial stages of the process:

© HERIOT-WATT UNIVERSITY

164 TOPIC 7. STANDARD ALGORITHMS

8 / 9 7 ! 1 " ' 6 5+����

' ! " 6 5+����;

Figure 7.4: Start of selection sort using two lists

7.6.6 Implementation of selection sort using two lists

Starting with List A containing N items and List B empty the algorithm is a follows:

�� ��� ����� � $ �� � / �
�� ������� � �����
(� ��� ����� � $ �� � C
��� ��:����: ��� �;�
����U
,� ��
����? �����& O
����? �������& �%��
�� ������� � �����
*� ��: ��
�� ���� �����
+�
����I �����& �
����? �������&
#�
����? �������& � :���
)�
��
�$� ���� �����

The algorithm may be implemented in a high level language. The code shown in
Code 7.4 is a full implementation in Visual Basic.

>����� E��
�'��
A�� 0����� ?� 2���"��! ����������� ?� 2���"��! 5�

 ?� 2���"��!

7��� ?� 2���"��
A�� 5
�" ?� I��
���
A�� @���? ��& ?� H������
A�� @���I ��& ?� H������
0��)��� ��� ��:�����
�'8 &

P��
P0��"��� ��
�'���� ���� �
P �
P7%�� ���"��� ;�

 ������� � �E@E�72>� �>�7 �� �
P�� ����
 %�
:��" �* ���:�� ����"��� ��: �
P������ �%� ��:���:
��� ��: �%� ������ �� �
P�;��� ��: ������� �
P �
PA�'����� �$$, �
P��
����� P	��� ���"��� ���'�:����
0���
����@��� @���? &

© HERIOT-WATT UNIVERSITY

7.6. SORTING 165

��
�'��������� @���? &! @���I &
>����������
��
E�: ���
0��)��� ��� ����� & P2�����
���)�����
��
���:���W� P��: '
��� ������ �����
0�'@�����
�
0�'����
���
�
0�'0�������
�
0�'������
�
0�'@����0����
0�'����
��0����

E�: ���

0��)��� ��� 0���
����@��� I
��� @��� && P5�

 ����
 ;��%
A�� 5�

 ?� 2���"�� P�* ���:�� �������
0�'@����0���� K K=
5�� 5�

 � $ 7� ��
@���? 5�

& � 2�� ## � ��:& � �
@���I 5�

& � $
0�'@����0���� @��� 5�

&=

���� 5�

E�: ���

0��)��� ��� ��
�'��������� I
��� @���? &! I
��� @���I &&
A�� >���� ?� 2���"��! 2���� ?� 2���"��! 	������ ?� 2���"��! 7��� ?� 2���"��
����������� � $
0����� � $
5�� >���� � $ 7� ��

0����� � 0����� � �
	������ � >����
5�� 2���� � $ 7� �� P	�:���'����� ��� �;� ����
�
����������� � ����������� � �

2� @���? 2����& O� @���? 	������& 7%�� P0������
����� ����'%
	������ � 2����
E�: 2�
���� 2����
@���I >����& � @���? 	������&
@���? 	������& � K K

���� >����
E�: ���

0��)��� ��� >����������
�� &
A�� ����� ?� 2���"��
0�'����
��0���� K K= P>����� ����
��
5�� ����� � $ 7� ��
0�'����
��0���� @���I �����&=

���� �����
0�'0������0���� 0�����
0�'�����0���� �����������

© HERIOT-WATT UNIVERSITY

166 TOPIC 7. STANDARD ALGORITHMS

E�: ���

0��)��� ��� '�:E�����
�'8 &
E�:
E�: ���

Code 7.4: Selection sort

Program notes

The program uses two arrays, one to hold the original list and the other empty. The
main procedure is ��
�'��������� @���? & that performs a linear search on the data
to find the minimum (or maximum) value. Once this is found on the first pass the variable
	������ is set to the smallest value. This value is transferred to
���I in position dictated
by the value of the loop variable outer. @���? 	������& is then set to a dummy value, "
", to maintain the integrity of the array. Scanning then repeats for the next smallest item
which is transferred to
���I until the sorted list is in
���I.

A screenshot from a program run is shown in Figure 7.5:

Figure 7.5: Selection sort output

© HERIOT-WATT UNIVERSITY

7.6. SORTING 167

Analysis of the selection sort

The selection sort is one of the simplest of the three but is the worst algorithm in
terms of comparisons made. For the two arrays version above this equates to N x N
comparisons, which for a 16 item array means 256 comparisons. It also requires N
iterations to complete the sort.

There are no memory overheads with this sort.

7.6.7 Summary of three sorting algorithms

Neither of the algorithms is efficient at sorting but they are easy to understand and
implement. The criteria for measuring algorithm performance are:

1. Behaviour with different size lists

2. Memory requirements

3. Stability

Stability of an algorithm is simply its ability to maintain the order of data items whenever
equal data items are encountered and their order is unchanged. This is important in
databases where the order of records is of importance.

Options 1 and 2 can be summarised in Table 7.7:

Table 7.7: Comparison of sorting methods

Simple sort Bubble sort Selection sort
using two lists

Comparisons N(N -1)/2 N x N N x N

Passes N N Negligible

Memory Negligible Negligible Small

Uses Small lists None lists

Stability Stable Stable Stable

Playing around with sorting

Try the methods of sample, bubble and selection sort using plastic counters with
numbers written on them. This way the counters can be easily moved by following
the instructions in each algorithm. This can work for search routines as well. It is a good
idea to use coloured counters for key items of data and pointers.

© HERIOT-WATT UNIVERSITY

168 TOPIC 7. STANDARD ALGORITHMS

Investigating sorting using special test cases

Try the sort algorithms on data according to the following criteria:

1. A set of data items in numerical order

2. A set of data items in reverse numerical order

3. A set with one item out of place, i.e. 10, 20, 30, 40, 50, 5, 60, 70, 80, 90

4. A set with some degree of order i.e. 10, 12, 19, 1, 6, 9, 5, 11, 21, 25

The three sorting algorithms will need to be modified to accept user input before
attempting this exercise.

Should you wish to explore the topic of sorting further, the following links offer excellent
information with animations::

http://www.cs.brockport.edu/cs/java/apps/sorters/bubblesort.html

http://www.ship.edu/~cawell/Sorting/selintro.htm

http://maven.smith.edu/~thiebaut/java/sort/demo.html

The following link offers discussions on various sort algorithms:

http://atschool.eduweb.co.uk/mbaker/sorts.html

7.7 User-Defined module libraries

By the time you have reached this stage your programming expertise should be second
to none! You will have probably found that throughout your programming experiences
there were occasions when you said to yourself "I’m sure I’ve done this procedure before
" or "can I use the function or code that I used in a program last week in the program I’m
writing at the moment?".

The answers to both are probably yes! Software developers have at their disposal vast
arrays of programming resources and development tools to help them build programs
modules and applications in the least time possible. Much of these resources will
be module libraries that are depositaries of useful software procedures, functions,
subroutines, programs, applications, OS routines, objects, classes, type declarations
etc. If they are all packaged as a DLL file (Dynamic Link Library) then they can be
used within most programming environments simply by calling them up. Windows itself
is composed of many DLL files.

A DLL file contains executable code and will link to a programming application at run time
rather than at compile time. This means that DLL files can be updated independently of
the applications that call them.

The use of DLLs is fine for large, serious programming applications that contain many
thousands of lines of code. Also, working with DLL files in Visual Basic can be
extremely confusing and difficult to implement without the use of windows Application
Programming Interface (API) and so is beyond the scope of this topic.

© HERIOT-WATT UNIVERSITY

http://www.cs.brockport.edu/cs/java/apps/sorters/bubblesort.html
http://www.ship.edu/~cawell/Sorting/selintro.htm
http://maven.smith.edu/~thiebaut/java/sort/demo.html
http://atschool.eduweb.co.uk/mbaker/sorts.html

7.7. USER-DEFINED MODULE LIBRARIES 169

For our purposes there is no need for this level of complexity. There are more
undemanding methods for creating a module library.

7.7.1 Creating a module library

A simple method can be implemented using the following steps:

1. create a new folder and give it a name such as "Module Library"

2. save Visual Basic procedures, sub routines and functions as modules with the
.BAS extension to this folder

3. call procedure, sub routine or function when required from VB program

As well as the module library storing BAS files it can also store forms, variable
declarations and text files.

The following worked examples will show the steps involved.

Examples

1. Worked example 1

In this example a small procedure that outputs blank lines is saved to the library as a
Visual Basic module. The module is saved as a .BAS file. This is a useful procedure in
formatting output.

1. Create '��	�:�
� @�����
 folder.

2. Save the following example procedure code to this folder as I
��8�����

��� I
��8@���� @���� ?� 2���"��&
A�� '����
5�� '���� � � 7� @����
5�����0���� KK

���� '����
E�: ���

3. To run the code I
��8�����:

1. open a new project in Visual Basic
2. click on Add Project
3. choose Add Module then Existing Module
4. open module folder to show a screen like Figure 7.6

© HERIOT-WATT UNIVERSITY

170 TOPIC 7. STANDARD ALGORITHMS

Figure 7.6: Module library folder
5. choose the file Blanks.bas

4. Create a form with a single button to execute the following code:

0��)��� ��� ��:�����
�'8 &
P0��"��� �� ���:�'�
��� ���'��
0���� KJ��:��"�K
I
��8@���� � P0��'�:��� '�

0���� K��� J��:��" �K
I
��8@���� (P0��'�:��� '�

0���� KE�:K

E�: ���

Run the program a few times to show that it works.

Notice that in the module code to enable print output the statement
5�����0���� KK was used to direct output to Form1. Modules do not have the
properties of inputting or outputting data.

2. Worked example 2

In this example a small procedure is used that swaps two numbers input by a user. This
is a useful procedure in sorting routines.

© HERIOT-WATT UNIVERSITY

7.7. USER-DEFINED MODULE LIBRARIES 171

1. Save the following procedure code to the module folder as �;������:

��� �;��H�
��� ������� ?� 2���"��!������� ?� 2���"��&
A�� ���� ?� 2���"��
���� � �������
������� � �������
������� � ����

E�: ���

2. Create a form with a single button to execute the following code:

0��)��� ��� ������:���
�'8 &
P7%�� ���"��� �;��� �;�)�
���
A��)�
��� ?� 2���"��!)�
��� ?� 2���"��
)�
��� � 2����I�� K2���� �����)�
��K&
)�
��� � 2����I�� K2���� ��'��:)�
��K&
0���� KH�
��� � K=)�
���= K H�
��� � K=)�
���
2�)�
��� 1)�
��� 7%��
�;��H�
���)�
���!)�
��� P0��'�:��� '�

0���� KH�
��� � K=)�
���= KH�
��� � K=)�
���
0���� KH�
��� �;����:[K

E
��
0���� KH�
��� ��� �;����:[K

E�: 2�
E�: ���

The user is asked to input two values. The SwapValues procedure is called from the
module and executed is value1 � value2. The values are printed out before and after
any swaps with a simple message.

Run the program a few times to show that it works.

3. Worked example 3

This example uses a function to convert from one currency into another. The steps are
identical to the other exercises.

1. Enter and save the following module code as ������'
����:

5��'���� ���)��� ?����� ?� ������'
! ���)������5�'��� ?� A���
�& ?� ������'

���)��� � ���)������5�'��� � ?�����

E�: 5��'����

2. Enter and save the program code:

0��)��� ��� ��:�����
�'8 &
P����
� ������'
 '��)�����
A�� 0���:� ?� ������'
! A�

��� ?� ������'
! E�'%��"����� ?� A���
�
0���:� � �*�+�
E�'%��"����� � 2����I�� KE���� ��'%��"� ���� K&
A�

��� � ���)��� 0���:�! E�'%��"�����&
0���� 0���:�! A�

���

E�: ���

3. Open the module Currency.bas and run the program

© HERIOT-WATT UNIVERSITY

172 TOPIC 7. STANDARD ALGORITHMS

You can also save your procedures, functions etc. as text files in the module library. To
add code in text format to a program go to E:�� then 2����� 5�
�. You will see a screen
like that of Figure 7.7:

Figure 7.7: Insert file

Choose the file you wish to insert and click on >���. The file will then be inserted into
the current program code.

The examples given above have been fairly basic but the main issue was to show how
a self-created module library may be used. You should now be able to create your own
library and save your much-used routines.

7.7.2 Review questions

Q3: The local golf club has 500 members. You have been given a list of the members’
handicaps and are required to sort the list into decreasing numerical order for the club
captain so that the forthcoming round of competitions can be organised. From your
knowledge of sorting algorithms which one would you choose to sort the handicap list?
Explain the algorithm.

Q4: Explain what is meant by a user-defined module library.

7.8 Summary

This has been a fairly practical topic. Standard algorithms were revisited and you should
now understand the nature of linear and binary search routines and the differences
between them. Equally you should have an understanding of three different sort
algorithms, how they operate and their differences under various criteria. Finally a look
at module libraries and their implementation rounds off the topic in a practical sense.

© HERIOT-WATT UNIVERSITY

7.8. SUMMARY 173

By the end of this topic you should now be aware of the following objectives:

• describe and compare simple linear and binary search algorithms;

• implement a binary search;

• describe and compare sort algorithms for simple sort, bubble sort and selection
sort in terms of number of comparisons and use of memory;

• implement simple, bubble and selection sort algorithms;

• describe and exemplify user-defined module libraries.

End of topic test

Q5: The following questions refer to the list:

Aberdeen, Bath, Coventry, Edinburgh, Glasgow, Hamilton, London, Manchester, Oxford,
St Andrews, Tain, Wick

Using a linear search how many items will be examined before Oxford is found?

Q6: Using a binary search how many items will be examined before Oxford is found?

Q7: You have a file of 10,000 records to sort into ascending order based on a key field.
Which one of the following sort algorithms would not be suitable?

a) Bubble sort
b) Simple sort
c) Selection sort
d) None of these

Q8: What is the significance of DLL files in programming?

Q9: During program execution DLL files have to be compiled as part of the main
program.

a) True
b) False

Q10: User-defined module libraries are simple to implement.

a) True
b) False

Q11: The following algorithm represents a sort routine.

�� ��� ����� � $ �� � / �
�� ������� � �����
(� ��� ����� � $ �� �
,� ��
����? �����& O
����? �������& �%��
�� ������� � �����
*� ��: ��
�� ���� �����
+�
����I �����& �
����? �������&
#�
����? �������& � :���
)�
��
�$� ���� �����

© HERIOT-WATT UNIVERSITY

174 TOPIC 7. STANDARD ALGORITHMS

Which one does it represent?

a) Simple sort
b) Bubble sort
c) Enhanced bubble sort
d) Selection sort

Q12: What is the signifcance of using a dummy value in line 9?

Q13: How could the algorithm be modified to reverse the order of the output?

Q14: Searching and sorting routines can be performed easier using a 4GL

a) True
b) False

© HERIOT-WATT UNIVERSITY

175

Topic 8

End of Unit Test

Contents

176 TOPIC 8. END OF UNIT TEST

An online assessment is provided to help you review this topic.

© HERIOT-WATT UNIVERSITY

GLOSSARY 177

Glossary

acceptance testing

The testing of software outside the development organisation and usually at the
client site. Also referred to as beta testing

alpha testing

Testing phase of software within the development organisation.

anonymous variable

An underscore character (�) used in a Prolog query to indicate a variable whose
value is not required.

assertion

Adding data to a Prolog database.

asynchronous programming

Another term for event-driven programming.

base class

Another name for a super-class

binary chop

Repeated division of a data list by halving to produce sub-lists for searching or
sorting.

black box testing

A phase in testing where focus is on the inputs and outputs of a software system,
rather than the code.

break-even point

The situation where, in running a new software system the benefits just begin to
outweigh costs.

CASE Repository

A CASE database of software project information that can be shared by software
developers.

circular queue

A list structure where the front pointer and rear pointer coincide

class

A group of objects that share common characteristics.

class libraries

Collections of classes that can be used in software development, as building blocks
for further class definitions.

Client

The person or company that initiates the development process by specifying a
problem.

© HERIOT-WATT UNIVERSITY

178 GLOSSARY

code generator

Automatic generation of source code from analysis and design specifications.

Combined conversion

A mixture of parallel, phased, pilot and direct conversion methods.

Component testing

Part of the testing phase that involves the building blocks of programs such as
procedures.

consultants

Experts recruited by the client company to engage in a feasibility study.

cost-benefit-analysis

Part of the feasibility study comparing project development costs with future
benefits.

Data dictionary

A repository of data definitions, system components etc., used by upper CASE
tools in software development.

derived class

A new class that is created from an existing class, inheriting all the characteristics
of the existing class.

Direct conversion

This is the complete changeover from the old software system to the new. This
’big bang’ approach attracts the greatest risks.

dispatcher

Part of the operating system that is responsible for executing event handlers.

divide and conquer

Philosophy behind binary halving of data lists to speed the operations of searching
and sorting.

document generator

A CASE tool that generates documents directly from comments in programs.

driver

A small program written specifically to supply an un-tested module with test data
and an interface.

encapsulation

The binding of data and methods within an object. Data cannot be changed within
objects by other objects.

event-driven

A system that responds to an external event such as a mouse click or a key press.

© HERIOT-WATT UNIVERSITY

GLOSSARY 179

event handlers

Small procedures that respond to events in event-driven programming.

event queue

Multiple triggered events are put into a queue system to wait processing.

executable prototype

An executable source code program obtained directly from the analysis diagrams
and specifications in UML

feasibility study

Research by the project leader into whether a project is viable enough to go ahead.

FIFO

First in first out stack structure.

functional specification

This details how the developed program will behave under specified conditions.

information hiding

Another term for encapsulation.

inheritance

The sharing of characteristics between a class of object and newly created sub
classes. This allows code re-use by extending an existing class.

inheritance diagram

A diagrammatic representation of an inheritance class hierarchy.

instance

An object is an instance of a class if it belongs to that class.

instantiation

This is the process, in Prolog where a variable is temporarily assigned a value.

LIFO

Last in first out queue structure.

link loader

Part of a compiler that links the object code with source code during compilation.

Lower CASE tools

Collections of programming tools that deal with the implementation, testing and
maintenance phases of software development.

macro generators

Assembly language that translated a single line of code into multiple lines of
machine code.

© HERIOT-WATT UNIVERSITY

180 GLOSSARY

Module testing

Testing of collections of procedures, functions etc., that can individually compiled
and executed.

operational requirements document

A document describing what a system must be able to do in order for it to meet
user requirements.

Parallel conversion

An implementation phase where the old software system is run in parallel with the
new software system.

Phased conversion

Similar to parallel conversion but the conversion is done over a larger time scale
using smaller parts of the program at a time.

Pilot conversion

This is where portions of the old software system that are known to work are tested
in the new environment. This is the safest conversion route.

polymorphic

Two objects derived from a base class are said to be polymorphic in that they can
respond to the same message in different ways

postfix notation

Another name for Reverse Polish notation

project leader

The person responsible for overseeing a project from start to finish.

project proposal

A report usually compiled by management of the client organisation outlining the
nature of the project in terms of scope and objectives.

queue

A dynamic data structure like a double-ended stack.

Rational Unified Process

A development process, initiated by IBM to deliver best proven practices during
each stage of a project.

record

Smallest data type that can be part of a random access file.

reverse engineering

Production of analysis and design diagrams directly from program source code.

Reverse Polish

Notation where operand comes after the operators. For example X + Y becomes
X Y +

© HERIOT-WATT UNIVERSITY

GLOSSARY 181

stack

A dynamic data structure much used by software applications and the computer
for storing temporary data. Only access is via the top of the stack.

stack overflow

Situation where a stack becomes full.

stack pointer

Register that hold the address of the top of a stack.

stack underflow

Situation where a stack becomes empty.

stub

A temporary addition to a program used to assist with the testing process.

sub-class

A class member of an existing class system.

super-class

A super class contains instances of sub-classes. Also called a base class.

system investigation

This is the post feasibility study phase where a more detailed exploration is
undertaken.

systems analyst

One of the consultants responsible for analysing and determining whether a task
is worth pursuing, using a computer. He/she is also responsible for the design of
the computer system.

test-harness

Another name for a driver in the context of software testing.

Unified Modelling Language

A standard object-oriented diagramming system suitable for CASE tools

Upper CASE tools

Collections of programming tools that deal with the analysis and design phases of
software development.

validation

Validation takes place when data is checked to see if it makes sense. For example
are the inputs to a program within the specified range, is the date format correct?

verification

This is a process that determines if data is correct. For example a name may be
input wrongly

white box testing

A phase in testing where focus is on the structure of the code, rather than its
function.

© HERIOT-WATT UNIVERSITY

182 ANSWERS: TOPIC 1

Answers to questions and activities

1 Software Development Process

Answers from page 10.

Q1: The scope of a project entails its size, complexity, costs and time constraints.

Q2: Financial data (sales), Personnel data (payroll)

Q3: A project proposal document is a written report containing details of a planned
project. Items that company management might include in a project proposal document:
Company profile, nature of the project, timescale, additional requirements.

Answers from page 14.

Q4: A feasibility is the first stage where the scope and objectives are outlined. The
aim is to ascertain whether the project is viable. The project leader usually carries this
task.

Q5: Economic, Technical, Legal and Scehdule. Economic feasibility deals with the
costs involved in any solutions and any cost- benefits that might be achieved. Technical
feasibility deals with determining the technologies required to solve the problem and
whether these are currently available and costs are within the project budget. Legal
feasibility deals with issues such as the affect of the new system on contracts of work,
conditions of employement, liability and Data Protection.

Q6: The client must take the decision to proceed with any further developments. The
report will help them to take this decision. The report may form the basis of the next
phase of system investigation and will be useful to the developers.

Q7: The analysis of a project in terms of all the costs involved in setting up system and
maintaining it in the long term. There comes a point when the system begins to make
money.

Q8: To plan and schedule projects involving concurrent tasks.

Answers from page 18.

Q9: This is to determine in some detail what has to be done to solve the stated
problem. This is carried out by a systems analyst.

Q10: Reluctance of personnel to talk because they might feel threatened by a new
system, fear of losing jobs, wary of anything new.

Q11: The ORD contains a full, detailed description of the problem including inputs,
processes and outputs. It is used throught the development process. It is significant
since it, if it accepted by the client then it is legally binding.

Q12: It describes exactly what the system has to do and how it should behave.

Q13: Structured design is a technique which emphasises breaking large and complex
tasks into successively smaller sections.

© HERIOT-WATT UNIVERSITY

ANSWERS: TOPIC 1 183

Answers from page 23.

Q14: Any four from: Code the system, test the system, set up hardware on client site,
produce documentation, train staff

Q15: Black-box testing treats the components of a program as black boxes. You do
not need to know what is inside a black box: all you need to know is what output you
should expect for a given input. In white-box testing, you know about the workings of the
program; you can see the code inside the modules. When you devise your test cases,
they are on the code - contrast this with the black-box form of testing, where you need
have no idea about the code at all.

Q16: The input, reason for the test case or a statement of what is actually being tested,
the expected outcome and the actual outcome.

Q17:

1. The old system runs along the new system until the newer version can take over.

2. Only a small section of a company will use the new system to evaluate its worth

3. Implementation of the new system can be planned over a few months when
decisions can be made as to its viability

4. The new system is started as soon as possible probably over a weekend to allow
for minimum disruption

Q18: How closely the does the solution match the specification? Is the solution what
the clients were looking for?

End of topic test (page 24)

Q19:

A) Definition of the problem

B) Feasibility study

C) Collecting the information requirements of the system

D) Analysis of the requirements of the system

E) Design of the system

F) Implementing and evaluating the system

G) Maintenance of the system

Q20: Implementing and evaluating the system

Q21: feasibility study

Q22: Analysis of the requirements of the system

Q23: Implementing and evaluating the system

Q24: b) Structure chart

Q25: a) True

© HERIOT-WATT UNIVERSITY

184 ANSWERS: TOPIC 1

Q26: Data which is used to determine if software works properly

Q27: d) Black box

Q28: Perfective

© HERIOT-WATT UNIVERSITY

ANSWERS: TOPIC 2 185

2 Interface Design

Answers from page 32.

Q1: Where speed is of importance, for example in real time systems. Expert user
rather than novice. Lack of powerful hardware resources, for example memory, display.

Q2: Advantages: faster to implement commands, memory overhead is minimal, users
have more control.

Disadvantages: usually poor help screens, commands can be quite complex to
remember, restricted to keyboard input.

Q3: Microsoft DOS, UNIX, Linux

Answers from page 42.

Q4:

a) No commands to learn, objects are easy to manipulate using a mouse and pointer,
vast availability of help screens, menu system only allows valid options.

b) Slower to operate and more time consuming for user because of a greater number
of options to choose from. Takes up more resources (disk space and memory).

Q5:

1. For the computer application, you will no doubt have identified "the usual"
components of a modern graphical interface: a main window showing the current
state of the document (if the application is a word processor, for example), " close",
"minimise" and "maximise" buttons on the window, as well as scroll bars and pull-
down menus, possibly one or more tool bars, and perhaps one or more "palettes"
(movable tool-bars). The output and feedback is all on the display screen (CRT or
flat-screen LCD panel). The primary interaction mode is visual, with symbolic (text)
input on the keyboard and mouse (which can also be considered to be provide
tactile and gestural input).

2. For the phone, there is a small, usually monochrome, screen. On a cordless fixed-
line phone this has room for only one line of text, whereas a mobile can usually
display 4 or 5 lines, plus simple graphics as well. Input is symbolic through the
keypad and a few extra buttons. The dominant mode of course is speech, but
symbolic tactile input is used when dialling, and also to provide data (for example, a
credit card number when ordering cinema tickets) and possibly text (when inputting
a short text message for transmission).

3. An appliance like a microwave oven has a range of buttons and possibly dials, an
LCD display and a bell or ringer which for example sounds when the set cooking
period is complete. There is also secondary auditory feedback from the fan which
runs when cooking is in progress, and stops when it’s finished. The primary mode
of interaction is tactile symbolic, with auditory and visual feedback through indicator
lights, a small LCD display (or manual clock on older models), and perhaps a
rotating platform inside the oven.

© HERIOT-WATT UNIVERSITY

186 ANSWERS: TOPIC 2

Answers from page 45.

Q6: Here are a couple of examples which may be among those you have identified:

1. The "Print" dialogue box, activated by selecting "Print" on the "File" menu on a
wide range of PC or Mac applications: the exact details will depend on what kind
of printer is attached, and whether it is attached directly or accessed over a local
area network, but it is likely to include radio buttons (e.g. for selecting print quality,
whole or part document printout, etc.), graphical buttons (e.g. for selecting page
orientation, landscape or portrait), text boxes (e.g. to specify start and finish page
numbers, if partial output is selected), and maybe also sub-dialogues (e.g. for
"Advanced" features). It is likely that default selections will already have been made
when the dialogue box appears, and these are the ones that will prevail if you
immediately hit the OK button.

2. The "pull-down" menus ("File", Edit", "View" etc.) which appear at the top of
every window in all versions of Windows, and at the top of the screen in MacOS:
these illustrate the range of elements and behaviour which is part of an almost
universal visual language of graphical interaction across a range of graphical
user interfaces. These include hierarchical side-menus (e.g. "New" on Windows
itself activates a sub-menu to select "File", "Folder", etc.), sub-dialogues (where
selecting the menu item brings up a dialogue box, rather than carrying out the
selected command immediately - an example is "Print" referred to above, and
"New" on some applications), dynamically added menu elements (e.g. a list
of recently -accessed files at the bottom of the File menu), keyboard shortcuts
(displayed alongside some menu item labels), etc.

End of topic test (page 45)

Q7: The component of the system which facilitates interaction between user and the
system.

Q8: Use of menu systems to find programs and other features quickly; Online help
facility; Use of WIMP to make it easier for the user.

Q9: Graphical user interface: user clicks on icons to perform tasks. Command-driven:
user types in commands or shortcuts. GUI: easier for novices to use the system.
Command: faster for experts once the commands are known.

Q10: b) False

Q11: d) None of the above.

Q12: b) Novice users find GUIs intimidating since there are too many options.

Q13: d) None of the above.

© HERIOT-WATT UNIVERSITY

ANSWERS: TOPIC 2 187

Q14: a) MS Dos

© HERIOT-WATT UNIVERSITY

188 ANSWERS: TOPIC 3

3 Software development languages and environments

Exercise (page 54)

Object Data Operations

Button Size, name, colour, position Drag, resize, drop

Text box Size, position, background colour,
border

Create, drag, resize

Window Size, position, minimised,
overlapping

Maximise, minimise, resize, drag

Dialogue box Size, name, position Add text, delete text, resize

Answers from page 55.

Q1: Increasing complexity of programs produced problems in managing and
maintaining them.

GUI environments cannot be programmed by the constructs of conventional languages.
Difficulty in coding program modules in isolation and the lack of integrity of data using
global variables.

Q2: It must exhibit encapsulation, inheritance and polymorphism.

Q3: An object is a unit that contains both data and the operations or methods on that
data. It is represented in the language as a single entity with three parameters: name,
attributes and operations.

Q4: Attributes: size, shape, colour, position, target type, target location, run mode
(normal, maximised, minimised)

Operations: highlight, drag, drop, execute, delete, rename

Exercise (page 56)

You could extend the diagram to include:

• 3-door hatchback, 5-door hatchback, petrol driven or diesel driven, 1200cc or
2000cc

• Petrol driven or diesel driven, automatic or manual

© HERIOT-WATT UNIVERSITY

ANSWERS: TOPIC 3 189

Exercise (page 57)

A possible solution would be as shown here:

���
��!���

/
�0����� 1��	����� ������� 2��
�"�

#!�������* #!�������% #!�������+

3� ����
�	4
1��� �*&'5%6&7� ,*+8%�%+8

5'669� ���!��

Answers from page 57.

Q5: A class is a collection of objects each of which have common characteristics.

Q6: Data: accountNumber, customerName, balance, creditRating

Methods:openAccount, debitAmount, CreditAmount, provideBalance

Q7: Inheritance means that new classes can be created by extending existing classes.
The new classes will have all the properties of the existing classes. This promotes the
reuse of code that can be used elsewhere in other programs.

Q8: Any three from: C++, Visual Basic, Delphi, Java, Simula, Smalltalk, Eiffel, Python,
Perl, C#

Answers from page 60.

Q9: Both data and operations are held together as a single entity. The only access to
the data is by means of the print statement - Print RegNumber. Otherwise the data is
hidden from further operations and so cannot be altered.

Q10: A message is the way that objects interact with one another. The only aspect that
a message can see in another object is the interface. The interface allows values to be
passed to and fro between objects using parameters but the objects’ data remain intact.

Q11: Polymorphism is where sub-classes can respond differently to identical messages
from the parent or super class. Same syntax, different semantics. Examples could
include: identical buttons executing different programs, dialogue box receiving text of
different colours, font, size etc.

© HERIOT-WATT UNIVERSITY

190 ANSWERS: TOPIC 3

Exercise (page 63)

Eiffel, Java, Smalltalk, Ruby, Python, Perl

Exercise (page 64)

1. �
���� 0
����! �!A�����'�!�!�!�&!A�����'���$$

2. �
���� 0
����!���

!�!������%���!����!	����&!	�����$

Answers from page 66.

Q12:

Agree: Generally speaking the statement has turned out to be true. There are now much
more object-oriented languages in use today, as a search of the literature will prove.
Also some of the older type languages have been enhanced to allow them to employ
object-oriented concepts. Many computing processes are now adopting object-oriented
approaches such as the various programming tools available for software development.
Not only that but a program design can be object-oriented even although the resulting
program is not and conversely, a program can be object-oriented allowing for the fact
that the language it is written in, is not.

Disagree: Object-orientedness is quite a difficult concept to grasp and there must be
many programmers who will not wish to change their programming environment just for
the sake of it. Expertise and skills in a particular language do not necessarily migrate to
an object-oriented environment.

Answers from page 70.

Q13: Invariably the computing environments will employ GUIs and Windows. Objects,
classes and methods are a common feature of both the language paradigms; clicking
on an icon, for example, the object will instigate an event that is processed by a specific
handler in the event-driven language. It is also the case that event-driven languages
support object-oriented constructs while many object-oriented languages are event-
driven.

Q14: Low level languages execute machine code, the machine’s native language. The
code varies from machine to machine according to the computer’s instruction set. Low
level has no high level constructs so the problem cannot be stated using English key
words.

Q15: Used in writing programs that execute fast such as software device drivers for
peripherals and data recording systems. Also used where computer resources are
minimal.

© HERIOT-WATT UNIVERSITY

ANSWERS: TOPIC 3 191

Answers from page 74.

Q16:

• The language is popular because of its relative ease of use and easy to learn;
statements and key words resemble those of the English language.

• It has powerful constructs for selection, iteration and control, procedures, functions
with parameter passing is standard and this would be favoured by software
developers in relation to other languages.

• It can cope with static and dynamic data structures like arrays, records and lists.

• Programs are compiled rather than interpreted and it will probably have powerful
debugging features as well.

• It has a fast compiler so that it can deal with large programs, and although the
language is meant for the scientific field, it is good at coping with problems in more
general areas.

• It can deal with legacy code in that older programs can run on the more modern
versions of the language.

• It has retained its status as a popular language because programmers prefer to
use it because of its many influential features.

Q17: ALGOL. Universal, general purpose language.

COBOL. Business applications.

LISP. Manipulation of data structures and artificial intelligence.

BASIC. Education

Answers from page 77.

Q18: 4GLs were developed for users to describe a problem in simple terms rather
than get involved with the actual coding. They were, therefore problem oriented rather
than imperative or procedural driven. This was quite a change in thinking from the
conventional 3GLs where the user coded the program into the computer. They were
designed for specific areas and incorporated such as SQL, RAD, and report generation.

4GLs arose from the rapid development of application programs, in particular databases,
spreadsheets and graphics. Behind many applications today there will be a 4GL. All the
features, functions and tools of a 4GL are invisible to the application but they can be
implemented rapidly by a key press or mouse click on an icon, for example.

Q19: The term 5GL is rather diffuse. Opinions differ. However there are some pointers

• The term could refer to natural language systems that would be used in artificial
intelligence and expert systems. The development of the programming language
ADA was heavily promoted in America while the Japanese embarked on a Prolog-
based venture, the so called "Fifth Generation" Computer Project.

• With Internet access becoming more popular languages were developed to
process user interaction while online. These included scripting languages
(JavaScript, VBScript) and editing languages (HTML, XML) that offered the user
complete control over their actions.

© HERIOT-WATT UNIVERSITY

192 ANSWERS: TOPIC 3

• With the proliferation of GUIs it required the use of event-driven, visual
programming languages (Visual C, Visual Basic, Visual FoxPro), together with
object-oriented languages (C++, Java, Visual Basic), to offer the user access to,
and manipulation of objects to process their requests.

Q20:

• Object-oriented: combining data and processing affords a more intuitive approach
to the problem.

• Program is more reliable and easier to maintain since it consists of objects and
their methods.

• Visual: allows for faster development of the program with reduced need for
traditional techniques.

• Visual languages take full advantage of the powerful GUI features.

End of topic test (page 78)

Q21: Inheritance

Q22: Object-oriented: language defines the data types and the operations at the same
time. Visual programming: allows easy creation and manipulation of objects such as
windows, buttons, and screens.

Q23: Object-oriented: data and processing combined, programs easier to maintain
using objects. Visual programming: no need for traditional methods, promotes rapid
application development

Q24: d) A machine code program can be executed by any CPU

Q25: Java, Visual Basic, HyperCard

Q26: Expansion of specialised application areas; Enhanced compiler techniques
allowed more complex programs to be translated. Escalation of new hardware
technologies (e.g. networking, cheaper memory).

Q27: d) All of the above

Q28: b) False

© HERIOT-WATT UNIVERSITY

ANSWERS: TOPIC 4 193

4 Software Testing and Tools

Answers from page 85.

Q1: Testing of components is the testing of the building blocks of programs or modules
that usually consist of procedures, subroutines or functions that can be compiled and
executed on their own.

Q2: Modules are collections of components but they cannot be compiled or executed
on their own. If a module is completed and ready for testing then a special program
called a driver or test harness is produced that supplies it withappropriate test data and
an interface under a test simulation environment

Q3: Alpha testing is performed on the program when it is just able to be run, but without
much of the functionality. The testing takes place on the developer’s premises

Q4: Acceptance testing, also called beta testing, is performed outside the development
company by independent testers. It represents the highest level of testing in the
development process. The testing should confirm that the program runs to as near
as possible to the original specification.

Q5: The three processes are:

• the finished software product meets the original specification

• the software is robust

• the software is reliable.

Dry Run Exercise (page 88)

Run a b sum Validation Output

1 6 0 False
2 6 3 9 True 9
3 -6 False
4 0 False
5 2 3 5 True 5
6 3 8 11 True 11
7 1 -7 False
8 1 4 5 True 5

The finalvalue for b is not used.

Answers from page 91.

Q6: The testing of software is to establish the presence of faults. Debugging finds and
removes errors in the software

Q7: A break point is set in a program to halt at a specified variable or line so that it
can be inspected. The program can then continue as normal. A program watch is set
to display the value of a variable as the program is run, either in step mode or normal
mode.

© HERIOT-WATT UNIVERSITY

194 ANSWERS: TOPIC 4

Q8:

Count Number1 Count � 4

0 6 False
1 6 False
2 7 False
3 9 False
4 12 False
5 16 True
6 21 True

Answers from page 99.

Q9:

• CASE tools are collections of software programs that are designed to automate the
various phases of the software development cycle from analysis right through to
implementation,

• More powerful tools with increased functionality were required to cater for the
increasing complexity of software systems. Pen and paper methods were
insufficient to maintain the increase in pace of developing new systems in shorter
time scales.

Q10: Upper CASE tools are devoted to the specification, analysis and design phases
of software development. They allow the automation of data flow diagramming and
structure charting techniques that, under normal circumstance take time to implement.
Lower CASE tools are concerned with the implementation, testing and maintenance
phases of software development. They are involved more with code generation and
document generation

Q11: Advantages:

• Increased speed of software development

• Better overall documentation and the use of CASE repositories (databases)

• Reduced costs and improved efficiency

• Improved communication throughout the development life cycle.

Limitations:

• CASE tools can be expensive so there has to be a cost benefit analysis undertaken.

• The choice of commercial CASE tools is increasing so choosing the right one can
be a daunting experience for a company.

• Training is also an issue. This will add to the overall cost that a company will need
to budget for if they opt to use CASE tools.

End of topic test (page 99)

Q12: b) False

© HERIOT-WATT UNIVERSITY

ANSWERS: TOPIC 4 195

Q13: a) True

Q14: b) False

Q15: a) Dry run

Q16: Run-time error such as infinite loop or memory problems.

Q17: To facilitate the tasks involved in the stages of the software development process
and to coordinate the activities from analysis through to implementation.

Q18: d) All of the above

Q19: b) False

© HERIOT-WATT UNIVERSITY

196 ANSWERS: TOPIC 5

5 High level programming language constructs 1

Answers from page 111.

Q1: A sequential file is a text only file that stores sequences of ASCII characters,
terminated by control characters, LF and CR. Once a file has been opened it can be
read and written to but not at the same time.

Q2: A sequential file is created by the process of opening it. In Visual Basic the
command is:

>��� 5�
����� 5�� >����� ?� Q�
�
��� Q�

Once the fie is open data can be written to it and the information saved when the file is
closed. To open a file for reading, the following command is used:

>��� 5�
����� 5�� 2���� ?� Q�
�
��� Q�

Q3:

KH��:�� J������K! K�+KBK��
��� I�

�K!K*KBK0
�
�� F�

�K!K�$KBK���)��� @�����K!
K�KBE>5

where X represents CR and LF and EOF is end of file.

Exercise (page 113)

Q4: 6���%�����'��: ,!$&, humidity at site 1

Q5: Value 13, maximum temperature at site 2

Extension work (page 116)

The problem can be broken down into five parts:

1. Create the array

2. Input days of the week

3. Find the day when 1st May falls

4. Input dates

5. Ouput formatted results

Create array

The 6 x 7 array can be created using the following statement:

A�� 	���% �!*&

© HERIOT-WATT UNIVERSITY

ANSWERS: TOPIC 5 197

Notice that the array has been defined with no type. This is done because the array will
contain both string and integer values.

Input days

The following days are input one by one into the array 	���%, in row 0:

	���% $! $& � K���:�
K
	���% $! �& � K	��:�
K
	���% $! �& � K7���:�
K
	���% $! (& � K6�:���:�
K
	���% $! ,& � K7%���:�
K
	���% $! �& � K5��:�
K
	���% $! *& � K�����:�
K

When 1st May falls

Fortunately the 1st of May falls on a Sunday! The output of dates will therefore start at
position Month(1,0) and continue over the next 5 rows.

Input dates

The dates could be read in manually much like the days but for a large amount of data
this would be rather tedious. Why not let the computer do the work!

The following algorithm will input the values 1 to 31 automatically:

�� 5�� A���� � � 7� (� ���� �
�� 5�� ��
���� � $ 7� *
(� A�
 � A���� � ��
����
,� >�����)�
�� �� A�
=
�� ���� ��
����
*� 0���� ��;
���
�� 0���� ��;
���
+� ���� A����

In line 1 the variable Dates takes the values 1 to 31 in steps of 7 because there are 7
columns.

In line 3 the variable Day increments by 1 up to 7 for row 1, then from 8 to 15 for row 2
and so on up to row 5.

Notice the semicolon ";" at the end of line 4. This is to suppress a line feed so that all 7
values are output on the same row.

Lines 6 and 7 are cosmetic to give sufficient spacing between rows for clarity of output.

Finally to overcome the problem of the program printing out values � 31 that occurs in
line 1 (next multiple of 7 is 35), the following code is added after line 3 above.

2� A�
 O� (� 7%��
>����)�
�� �� A�
=
E�: 2�

© HERIOT-WATT UNIVERSITY

198 ANSWERS: TOPIC 5

The complete code listing is shown in Code 8.1:

>����� E��
�'��
A�� 	���% *! ($&
A�� A�
 ?� �����"
A�� A���� ?� 2���"��
A�� ��
���� ?� 2���"��
A�� 7��� ?� 2���"��

P���
P0��"��� �� ������ �%� ����% �� 	�
 �$$� �
P����" � �/:���������
 ����
 �
P2� '������� ���% �����" ��: ������'�
 :��� �
P �
P��)����� �$$, �
P���

0��)��� ��� '�:�G���
�'8 &
A�� ����� ?� 2���"��
P2���� :�
�
	���% $! $& � K���:�
K
	���% $! �& � K	��:�
K
	���% $! �& � K7���:�
K
	���% $! (& � K6�:���:�
K
	���% $! ,& � K7%���:�
K
	���% $! �& � K5��:�
K
	���% $! *& � K�����:�
K
P>����� :�
�
5�� ����� � $ 7� *
0�'>������0���� 	���% $! �����&= K K=

���� �����
0�'>������0����
0�'>������0����
P>����� :����
5�� A���� � � 7� (� ���� �
5�� ��
���� � $ 7� *
A�
 � A���� � ��
����
2� A�
 O� (� 7%��
0�'>������0���� 7�� ��
���� � ��&= A�
=
E�: 2�
���� ��
����
0�'>������0����
0�'>������0����
���� A����
E�: ���
0��)��� ��� ��:E�A��
�'8 &
E�:
E�: ���

Code 8.1: Month program

© HERIOT-WATT UNIVERSITY

ANSWERS: TOPIC 5 199

The program output is shown in Figure 8.1:

Figure 8.1: Program month output

Exercise (page 117)

In February 2005 the 1st land on a Tuesday. This means that the first line of output of
the dates will run from columns 2 to 7. Also February has 28 days so output should
terminate at value 28 on row 5.

Answers from page 117.

Q6: The arrays can display tables of related information that correspond to records in a
database. Weather information, Ceefax pages, programme times, world temperatures,
tide tables, sports league tables, bus /train timetables, crossword puzzles etc.

Q7: For a 2-dimensional array we have to consider two values; the row number and
the column number. By default the row number is stated first. For a 3 x 4 array the
initialisation can be done manually where each location is set to 0:

array(0,0) = 0

array(1,0) = 0

.....................

array(2,3) = 0

Alternatively a looping structure can be used:

for row = 0 1 to 2

for column = 0 to 3

© HERIOT-WATT UNIVERSITY

200 ANSWERS: TOPIC 5

array(row,column) = 0

next column

next row

The latter method is preferable for large arrays.

End of topic test (page 117)

Q8: c) They contain text only and access is slow

Q9: b) Closed

Q10: Sequential files are read from beginning to end and so the files cannot be read
and written to simultaneously.

Q11: a) 1-dimensional array

Q12: c) 2-dimensional array

Q13: b) Array(2,4)

Q14: a) Array(1,3)

Q15: d) 15

Q16: To empty the locations of old information that might corrupt new data

Q17: b) False

© HERIOT-WATT UNIVERSITY

ANSWERS: TOPIC 6 201

6 High level programming language constructs 2: Data structures

Exercise 1 (page 122)

�� 0��% ++=
�� ���'8 ������� � ���'8 ������� � �=
(� 0�� ++=
,� ���'8 ������� � ���'8 ������� / �=
�� 0�� ��=
*� ���'8 ������� � ���'8 ������� / ��

Exercise 2 (page 122)

Q1: Push A, Push B, Push C, Pop C, Pop B, Push D, Pop D, Push E, Pop E, Push F,
Pop F, Pop A

Q2: Only 1 and 2 are possible.

Extension Work: Reverse Polish notation (page 123)

Q3: � � � ' < : � / �

Q4: � (/ # � , � � � < �

Answers from page 128.

Q5: A stack is a dynamic data structure that can be represented by an array in memory.
It is usually of a fixed size and is an example of a LIFO structure meaning that the last
item to be added to the top of the stack is the first out. A stack pointer is a register
that contains the address of the top of the stack, which is movable. Items are added by
pushing and removed by popping; an input stream a,b,c,d,e will be popped in reverse
order e,d,c,b,a. Two important error conditions are stack overflow where the stack
becomes full, and stack underflow where the stack becomes empty. Both conditions
are tested before a stack is used.

A stack is useful in computing since it can store temporary results of arithmetic
operations, procedure, function and subroutine calls during programming and evaluating
mathematical expressions to produce postfix or Reverse Polish notation. It is also
used for storing the contents of registers during the processing of interrupts and DMA
routines.

Q6: A queue, like a stack is a dynamic data structure that can be represented by an
array in memory. It is usually of a fixed size and is an example of a FIFO structure
meaning that the first item to be added is the first out. A queue has two pointers, a front
pointer that signifies the front or top of the queue and a rear pointer that indicates the
rear of the queue where items are added. The input stream a,b,c,d,e will be output in
the same order. Like a stack the queue will have a fixed size in memory. If the front
and rear pointers are identical then the queue is empty. If the front pointer indicates the
maximum size allowed then the queue is full. A circular queue is formed if the end of

© HERIOT-WATT UNIVERSITY

202 ANSWERS: TOPIC 6

the queue has no more room for items to be added. In this case the items are added to
the front of the queue instead.

A queue is useful in computing since it hold items waiting to be processed. These could
be print jobs, scheduled tasks in a multitasking environment or events in event-driven
programming.

Exercise (page 139)

The code shown in Code 6.3 will open an existing file and output the records to a form.

Answers from page 140.

Q7:

• A sequential file can only be opened for reading or writing but not both. A random
access file is capable of being read and written to at the same time.

• Random files are less efficient in memory usage but are faster to retrieve data.

• Sequential files are composed of text only whereas random files can store mixed
data in the form of records.

Q8: A record is collection of related items stored under fields that represent the type of
data in the record (string, numeric, character). It is the smallest unit of information that
can be processed by a random access file.

The length of a record, and hence a file is used by the computer filing system to allocate
sufficient space for the file. If the records are stored in equal chunks then it is easier and
faster for the filing system to retrieve the information.

Q9: Example field sizes could be:

25 + 15 + 10 + 1 + 40 + 20 + 10 + 12 + 10 + 30 = 173 bytes

100,000 x 173 = 17,300,000 bytes

= 17,300,000/1024 x 1024

= 16.5 Mb

End of topic test (page 141)

Q10: c) a record

Q11: d) a stack

Q12: Overflow and underflow

Q13: c) Queues and stacks are dynamic data structures

Q14: a) True

Q15: b) 250Kb

Q16: a) Stack

© HERIOT-WATT UNIVERSITY

ANSWERS: TOPIC 7 203

7 Standard algorithms

Answers from page 152.

Q1: A binary search starts by finding the mid point of the list of items. The search
key is then compared to the value at the mid point location. Depending on whether the
search key is greater than or less than this value, either the top half or the bottom half of
the list is discarded. The mid point of the remaining half is established and the algorithm
repeats itself (recursion) continually dividing the list into two until the search key is found.

Q2:

• Linear search is slower than a binary search

• Linear search can operate on unordered lists, binary lists must be ordered

• Linear search is simple to code and implement, binary search more complex

• Average search length for linear is N/2 and for binary log2N where N is the number
of data items

Answers from page 172.

Q3: Probably the simple sort would be chosen.

1. Starting with the first two items compare them. If the second is greater than the
first, swap them.

2. Compare first item with third and if the third is greater than the first, swap them.

3. Repeat comparing first item with successive values and swap, if required, until end
of list is reached

4. Now repeat the process starting with second item and compare with successive
values until end of list.

5. Continue comparing each item with remaining items until the list is sorted.

This will produce the list, highest value first.

Q4: A user-defined module library is a collection of useful routines such as procedures,
functions, subroutines, programs, modules etc. that save the programmer from re-
writing code every time any of the above are required. They are commonly stored as
DLLs and can be called at any time during the execution of a program.

End of topic test (page 173)

Q5: 9

Q6: 2

Q7: d) None of these

Q8: A collection of stored routines that can be called by a program at run time or a
collection of user-defined modules.

Q9: b) False

© HERIOT-WATT UNIVERSITY

204 ANSWERS: TOPIC 7

Q10: a) True

Q11: d) Selection sort

Q12: To flag locations that take no further part in the sort process

Q13: Search for maximum value instead of minimum

Q14: a) True

© HERIOT-WATT UNIVERSITY

	Software Development Process
	Introduction
	Review
	Project progression and scope
	Project proposal
	Feasibility study
	The system investigation
	Summary

	Interface Design
	The need for a user interface
	Type of user interfaces
	Command line interfaces (CLI)
	Review questions
	Menu driven interfaces
	Graphical user interfaces (GUIs)
	Windows
	Icons
	Menus
	Pointers
	Alerts and Warnings
	Dialogue Boxes
	Review questions
	Processing Capabilities of Graphical User Interfaces
	Advantages and Disadvantages of Graphical User Interfaces
	Special purpose interfaces
	Review question
	Summary

	Software development languages and environments
	Introduction
	Object-oriented languages
	Why object-oriented?
	Object-oriented concepts
	Comparison of object-oriented with other language types
	Trends in programming language development
	Summary

	Software Testing and Tools
	Software testing in more detail
	Debugging methods
	CASE tools
	Summary

	High level programming language constructs 1
	File handling
	Arrays
	Summary

	High level programming language constructs 2: Data structures
	The stack
	Implementation of a stack
	The queue
	Implementation of a queue
	Review questions
	Records
	Implementation of a record
	Review questions
	Summary

	Standard algorithms
	Searching techniques
	Linear Search
	Binary search
	Implementation of a binary search
	Review questions
	Sorting
	User-Defined module libraries
	Summary

	End of Unit Test
	Glossary
	Answers to questions and activities
	 Software Development Process
	 Interface Design
	 Software development languages and environments
	 Software Testing and Tools
	 High level programming language constructs 1
	 High level programming language constructs 2: Data structures
	 Standard algorithms

