
SCHOLAR Study Guide

SQA Advanced Higher Computing
Unit 2
Developing a Software Solution

David Bethune
Heriot-Watt University

Andy Cochrane
Heriot-Watt University

Ian King
Heriot-Watt University

Heriot-Watt University

Edinburgh EH14 4AS, United Kingdom.

First published 2001 by Heriot-Watt University.

This edition published in 2009 by Heriot-Watt University SCHOLAR.

Copyright © 2009 Heriot-Watt University.

Members of the SCHOLAR Forum may reproduce this publication in whole or in part for
educational purposes within their establishment providing that no profit accrues at any stage,
Any other use of the materials is governed by the general copyright statement that follows.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means, without written permission from the publisher.

Heriot-Watt University accepts no responsibility or liability whatsoever with regard to the
information contained in this study guide.

Distributed by Heriot-Watt University.

SCHOLAR Study Guide Unit 2: Advanced Higher Computing

1. Advanced Higher Computing

ISBN 978-1-906686-11-6

Printed and bound in Great Britain by Graphic and Printing Services, Heriot-Watt University,
Edinburgh.

Acknowledgements
Thanks are due to the members of Heriot-Watt University’s SCHOLAR team who planned and
created these materials, and to the many colleagues who reviewed the content.

We would like to acknowledge the assistance of the education authorities, colleges, teachers
and students who contributed to the SCHOLAR programme and who evaluated these materials.

Grateful acknowledgement is made for permission to use the following material in the
SCHOLAR programme:

The Scottish Qualifications Authority for permission to use Past Papers assessments.

The Scottish Government for financial support.

All brand names, product names, logos and related devices are used for identification purposes
only and are trademarks, registered trademarks or service marks of their respective holders.

i

Contents

1 The Advanced Higher Project 1
1.1 Introduction . 2
1.2 Unit, Project and Course . 2
1.3 Record Keeping - the Record of Work 3
1.4 Choosing a suitable project . 4
1.5 Group Projects . 7
1.6 Making up your mind . 7
1.7 Summary . 8
1.8 Revision Questions . 8

2 Analysis 11
2.1 Prior Knowledge and Revision . 12
2.2 Introduction . 13
2.3 The Project Specification . 13
2.4 Project Planning . 18
2.5 Research . 23
2.6 Selecting strategies . 23
2.7 Resources . 26
2.8 Summary . 27
2.9 Revision Questions . 28

3 Design 29
3.1 Prior Knowledge and Revision . 30
3.2 Introduction . 31
3.3 User Interface Design . 31
3.4 Design Methodologies . 33
3.5 Design Notations . 33
3.6 Summary . 38
3.7 Revision Questions . 38

4 Implementation 41
4.1 Prior Knowledge and Revision . 42
4.2 Introduction . 43
4.3 Creating a test plan . 43
4.4 Implementing your design . 45
4.5 Keeping your Record of Work . 46
4.6 Summary . 47

5 Testing 49
5.1 Prior Knowledge and Revision . 50

ii CONTENTS

5.2 Introduction . 51
5.3 Carrying out your test plan . 51
5.4 Evidence of Testing . 52
5.5 Rectifying Errors and Bugs . 53
5.6 A User Questionnaire . 54
5.7 Summarising your results . 56
5.8 Summary . 57

6 Project Report 59
6.1 Prior Knowledge . 60
6.2 Introduction . 60
6.3 Evidence required for Unit Assessment 60
6.4 Evidence required for Course Assessment 62
6.5 User and Technical Documentation . 64
6.6 Evaluation Report . 67
6.7 Summary . 69

Glossary 70

Answers to questions and activities 71
1 The Advanced Higher Project . 71
2 Analysis . 73
3 Design . 74
4 Implementation . 75
5 Testing . 76

© HERIOT-WATT UNIVERSITY

1

Topic 1

The Advanced Higher Project

Contents

1.1 Introduction . 2

1.2 Unit, Project and Course . 2

1.3 Record Keeping - the Record of Work . 3

1.4 Choosing a suitable project . 4

1.5 Group Projects . 7

1.6 Making up your mind . 7

1.7 Summary . 8

1.8 Revision Questions . 8

Learning Objectives

After Studying this topic, you should be able to:

• describe how the project fits into the Advanced Higher Computing course

• explain what evidence you need to produce for assessment

• describe the problem for which you are going to develop a software solution

2 TOPIC 1. THE ADVANCED HIGHER PROJECT

1.1 Introduction

You may have already begun the Advanced Higher Computing course, probably working
on the Software Development unit, or you may be right at the start.

This Scholar unit will help you to work your way through the Coursework project that
you have to do as part of your course. It is quite unlike any other units that you have
studied so far in Computing. Instead of having to learn and understand lots of new facts,
concepts and skills, this unit is about you using the knowledge and skills you already
have, to analyse a problem, then design, implement and test a software solution to that
problem.

In this first Topic, you will discover how the project fits into the course, what records and
evidence you will be required to produce, and then you will choose a suitable problem
to tackle.

1.2 Unit, Project and Course

The Advanced Higher Computing course, like all other courses, is made up of 2
mandatory units and a choice of one out of 3 optional units:

�������	
�	�������	�

�	��������
������������

�������	
�����	����

������	�
�����������

����������
�
������	�
��������

��������	
���� ��������
����

To complete the course, you need to:

• pass each unit

• pass the course assessment

The course assessment is in 2 parts:

• a final exam on all 3 units, worth 120 marks

• a report on your coursework project, worth 80 marks.

As you work through this unit, you will

a) learn about managing a project,

b) choose a problem for your own project

c) complete the project

d) generate evidence for the practical Outcome for this unit,

© HERIOT-WATT UNIVERSITY

1.3. RECORD KEEPING - THE RECORD OF WORK 3

e) produce a project report for the course assessment

There are several stages to work through in any software development project. You
know them already:

You will work your way throught each of these stages as you follow these notes.

1.3 Record Keeping - the Record of Work

As you work your way through this unit, you should keep a record of work.

This is important both to keep track of what you have done, and because it will be
required as evidence for assessment. If you don’t keep a record of work, you could fail
the unit and also get very low marks for the coursework.

So, what format should the record of work take?

It is probably best to use an A4 loose-leaf folder, with dividers for the different sections.

The sections required to pass the unit will be the first 4 stages of the development
process: analysis, design, implementation and testing.

The next 2 stages - documentation and evaluation are required for the course
assessment. Maintenance isn’t assessed, so you can leave it out.

Preparing your Record Of Work folder

15 min

• Get a loose-leaf folder.

• Obtain or make a set of dividers.

• Label the dividers with the 6 stages.

• Insert them into your folder.

© HERIOT-WATT UNIVERSITY

4 TOPIC 1. THE ADVANCED HIGHER PROJECT

As you work through your project, you will gradually fill up the Record of Work folder.
Into it, you will insert notes and diagrams on analysis and design, listings of program
code, screen dumps and tables of testing, and many other items.

It is a good idea to get into the habit of putting the date and your name (or initials) on
every page that you put into your Record of Work.

The Record of Work is not meant to be a work of art! You don’t need to spend time
on making it look pretty, or rewriting or typing rough notes. It should simply contain the
actual working documents you create as you go along.

At the end of the project, you will be required to create a more formal report covering
some aspects of your work, but you don’t need to be concerned about that at this stage.

Don’t make the mistake of thinking that the formal report is all that is required. Your
assessor may want to see the Record of Work, so it is important that you maintain it,
and keep it up to date.

Figure 1.1:

1.4 Choosing a suitable project

The first thing you need to do is to choose a suitable project.

Your project can be based on any computing problem to which you can design and
implement a software solution.

© HERIOT-WATT UNIVERSITY

1.4. CHOOSING A SUITABLE PROJECT 5

It can be on any computing problem at all, but it should:

• be at an appropriate level for Advanced Higher

• build on learning from the mandatory units

• be achievable within 40 hours.

What does "at an appropriate level" mean?

It means that the problem you choose to tackle couldn’t simply be solved by using
standard coding and algorithms that you learned for Higher Computing. You will need
to choose something that requires more complex ideas, coming from what you have
already learned during the Advanced Higher course, or from research that you carry out
as part of your project.

For example, in the Software Development unit in Advanced Higher, you have learned
about

• file handling

• sort algorithms

• 2-d arrays

You should choose a project which includes at least one of these constructs.

Your tutor will advise you about whether or not your ideas would be appropriate.

Brainstorming Project Ideas

15 min

Discuss some possible ideas for projects. Write them all down as you think of them.

Considering Possible Project Ideas

15 min

Consider each possible project topic below, and discuss whether or not it might be
suitable with your teacher and other students.

You can check your answers at the end

Q1:

1. a simulation of a simple card game with a graphical user interface and an element
of artificial intelligence developed using a high level programming language;

2. a simulation of a simple card game using only code modules easily available in the
public domain;

3. A simulation of a multi-player complex card game, with realistic graphics, able to
be played over a local area network.

4. an encryption / decryption program using only a simple scrambling algorithm such
as one which would be within the reach of a Higher candidate;

5. an encryption / decryption program involving file handling and complex key
algorithms;

© HERIOT-WATT UNIVERSITY

6 TOPIC 1. THE ADVANCED HIGHER PROJECT

6. an implementation of a natural language interpreter based on a very limited
vocabulary and simplistic approach to grammar rules;

7. an implementation of a natural language interpreter using a declarative language
and based on a recognised grammar and parsing technique;

8. an implementation of a natural language interpreter using a declarative language
and based on a recognised grammar and parsing technique, and which can
respond effectively to any input.

9. A computer aided learning package using only simple multimedia authoring tools;

10. A computer aided learning package using some scripting and saving user data to
a filing system.

11. a computer aided learning package which demonstrates a simple assembly
language emulator for teaching the computer systems unit and incorporating a
number of commonly used op-codes and addressing modes;

12. a network application to allow peer-to-peer chat facilities;

13. a web site which does not include advanced techniques such as scripting;

14. a web site which incorporates advanced techniques such as the development of
user interactivity, form filling or a front end to a database system making extensive
use of PHP, Java or PERL;

15. an expert system for a careers database which does not include advanced rules or
other constructs available within an expert system shell.

16. an expert system developed without the aid of an expert system shell.

If you consider that these are all a bit too complicated and daunting, here are a few more
ideas that you could use, all of which meet the criteria for an AH Coursework Project.

• a lottery program, which selects 7 random numbers, sorts them into order and
displays them graphically

• a multiple choice test which records each user’s score and saves them to a file

• any simple game, which generates a player’s score, allows this to be saved to a
file, then displays a sorted high score table

• an implementation of "Who wants to be a millionaire", using questions and answers
stored in data files, and a 2-d array to store the amounts won after each question

• a simple implementation of "Eliza" using data files to store vocabulary

Narrowing down your possible projects

15 min

Now return to your list of possible projects that you "brainstormed" earlier. Go through
them one by one and consider whether they are suitable. You may need to adapt them
- either adding some complexity, or reducing an over-ambitious idea.

Now you need to go away and think about it! Which of the ideas you have considered
interests you the most? Is it possible within 40 hours? Is it complex enough, but not so
complex that it is unrealistic? Do you have access to suitable hardware and software?

© HERIOT-WATT UNIVERSITY

1.5. GROUP PROJECTS 7

1.5 Group Projects

It is possible to attempt a group project rather than an individual one.

There are some advantages - you can share and discuss ideas with others in the group.

There are also some disadvantages - you have to be able to divide up the problem so
that your tutor can easily identify and assess each person’s contribution to the group.
There is also the risk that if one person is not "pulling their weight" or drops out midway
through the project, it might affect everyone else’s progress.

If you think a group project might be possible, you will need to discuss it very carefully
with your tutor and the others in the group before you begin.

1.6 Making up your mind

You have thought about (and discussed) a range of possible topics.

You have considered whether or not they are suitable topics - neither too easy, nor too
complex and time-consuming.

You have considered whether or not a collaborative group project is a good idea, or
whether it would be better to "go it alone".

Now it is time to make up your mind.

OK - have you decided what you are going to do? Then ...

A project proposal

30 min

Write (or type) a brief description of your idea - just the main points - probably 2 or
3 sentences - certainly no more than a single paragraph. Give it the title "Project
Proposal".

Make 2 copies - give one to your tutor - file the other one in your Record of Work folder
(and remember to put the date and your name or initials on the page!)

Create a title page for your folder. It should include:

• Your name

• Your SQA candidate number

• The date

• A suitable title "AH Computing - Coursework project"

• A title for your project

Add this to your Record of Work. It now contains 2 items - a cover page, and your project
proposal.

© HERIOT-WATT UNIVERSITY

8 TOPIC 1. THE ADVANCED HIGHER PROJECT

Figure 1.2:

1.7 Summary
• You have begun to manage and carry out a software development project

• Your project will be assessed - it is needed to pass the unit, and it also contributes
40% of your overall award (A, B, C or D) for the course.

• You should have chosen a project which is complex enough for Advanced Higher,
but achievable within 40 hours and with the hardware and software that you have
available.

• You should have started to keep a Record of Work throughout the project.

1.8 Revision Questions

Q2: To pass Advanced Higher Computing:

a) you must pass 3 units, complete a project and sit an exam
b) you must complete 5 units
c) you can choose any 3 out of 5 units
d) you must complete 2 mandatory units, and either a project or an optional 3rd unit

Q3: The project:

© HERIOT-WATT UNIVERSITY

1.8. REVISION QUESTIONS 9

a) is only required to pass the unit, it doesn’t count for the course award
b) is required to pass the unit and counts 50% of the course award
c) is required to pass the unit and counts 40% of the course award
d) must be based on one of the optional units

Q4: The topic for your project:

a) must be chosen form a list published by the SQA
b) is your own choice, but it must be suitably complex
c) will be decided by your teacher
d) is your own choice, and there are no limits to your choice

Q5: A Record of Work

a) is an optional extra that you might want to produce
b) is something that you put together after you have completed your project
c) is useful to you, but not required for assessment
d) will help you keep track of progress, and must be maintained for assessment

Q6: Your project topic must be based on

a) a software solution to a computing problem
b) the high level language that you used for the Software Development unit
c) an investigation of some area of Computing hardware that interests you
d) a problem which has never been solved before

© HERIOT-WATT UNIVERSITY

10 TOPIC 1. THE ADVANCED HIGHER PROJECT

© HERIOT-WATT UNIVERSITY

11

Topic 2

Analysis

Contents

2.1 Prior Knowledge and Revision . 12

2.2 Introduction . 13

2.3 The Project Specification . 13

2.3.1 Statement of requirements / project proposal 14

2.3.2 Scope and boundaries . 15

2.3.3 Functional requirements . 16

2.3.4 Specification Review . 17

2.4 Project Planning . 18

2.4.1 Sub-tasks . 18

2.4.2 Time planning . 20

2.4.3 Monitoring and management . 22

2.5 Research . 23

2.6 Selecting strategies . 23

2.7 Resources . 26

2.8 Summary . 27

2.9 Revision Questions . 28

Learning Objectives

After studying this topic, you should be able to:

• describe the main elements of the analysis stage of the software development
process

• describe and create a problem specification

• explain the terms scope and boundaries, and functional requirements

• describe and create a project plan

• explain the importance of identifying sub-tasks, setting a realistic time-scale and
applying appropriate project management techniques

• carry out research and select appropriate strategies for a project

12 TOPIC 2. ANALYSIS

2.1 Prior Knowledge and Revision

You should already know the seven stages of the software development process:
Analysis - Design - Implementation - Testing - Documentation - Evaluation -
Maintenance:

Analysis is the first stage, and involves clarifying exactly what is required. Often this
means beginning with a vague problem description or project proposal, and by applying
various techniques and activities, turning it into a precise program specification. This
is agreed between the client and the developer before any further work is done on the
project.

Revision

Q1: The first 3 stages of the software development process, in order, are:

a) Analysis, Design, Implementation
b) Design, Analysis, Implementation
c) Documentation, Evaluation, Maintenance
d) Analysis, Implementation, Testing

Q2: The purpose of analysis is to:

a) turn a vague program specification into a precise problem description
b) design the overall structure of the program
c) turn a vague problem description into a precise program specification
d) decide whether or not a program needs to be developed

Q3: The program specification is:

a) written by the client
b) agreed between the client and the developer
c) written by the developer
d) the starting point of the analysis stage

Q4: Careful analysis of a problem:

a) is only required for major software development projects
b) is only used by learners - real program developers jump straight to the design stage
c) is useful to you, but not required for assessment
d) should be the starting point for any software development, large or small.

© HERIOT-WATT UNIVERSITY

2.2. INTRODUCTION 13

2.2 Introduction

��������

������

��	
���������

�������

�����������

���
�����

�����������

In this Topic, we will develop the ideas you already know about the analysis stage of
the software development process. You will learn more about what happens during the
analysis stage, leading to a precise program specification. You will also learn about
project management, and the various important aspects of a project plan.

You will then apply this to your own Advanced Higher Computing project. As you do so,
you will produce items of evidence to file in your Record of Work.

2.3 The Project Specification

The purpose of the analysis stage is to develop a precise program or
project specification. The starting point will usually be either an existing system which
is to be improved in some way, an outline project proposal, or a rough description of a
new system required by a customer or client.

The task of refining this into a precise specification is carried out by a systems analyst
working closely with the client. As you already know, the systems analyst (and his/her
team) will use a variety of techniques to clarify the original proposal, until a precise
specification can be agreed between the analyst and the client.

© HERIOT-WATT UNIVERSITY

14 TOPIC 2. ANALYSIS

�����������
���

�
����

This precise specification should include:

• A clear and detailed statement of the scope and boundaries of the problem /
project

• A list of the precise functional requirements

We will consider these in detail next.

In the context of your own Computing project, you will be both the client and the analyst.
You have already written down a project proposal, which gives a rough description of
what your project will be about. Your next task will be to clarify that into a specification.

�����������
���

�
����

But first, we should take a closer look at what the specification should include.

2.3.1 Statement of requirements / project proposal

This is what you already have: the initial statement of requirements from the client. It
is enough to get the analysis process started, but not nearly detailed enough to begin
design work. In a "real-life" scenario, it will lead to many meetings between the client and
the systems analysts, and may involve a feasibility study to ensure that the program /
project is possible within the client’s budget and time constraints.

© HERIOT-WATT UNIVERSITY

2.3. THE PROJECT SPECIFICATION 15

For your project, this will have taken the form of a discussion between yourself and
your tutor. Your tutor may have had to point out to you that your original idea was too
ambitious, or that the required resources were not available, or perhaps that you could
extend your idea into something more interesting or challenging.

Now it is time to turn your project proposal into a project specification

2.3.2 Scope and boundaries

It is very important at the outset to establish clearly the scope and boundaries of the
project. Scope and boundaries are opposite sides of the same "coin". Between them,
they give a precise description of the extent of the project.

Here is a typical statement about scope and boundaries. You will find similar statements
by searching the web. "The project scope states what will and will not be included
as part of the project. Scope provides a common understanding of the project for all
stakeholders by defining the project’s overall boundaries."

One way of thinking about it is:

• the scope clarifies what the project must cover

• the boundaries clarify what the project will not cover.

For example, suppose your project was to develop an expert system giving students
guidance on job opportunities which they should consider after graduating from
University.

The scope of the project would be to create an expert system. Then it would be
necessary to describe the range of jobs and degrees that would be included in the
system, the level of information that would be output by the system (does it suggest
contact addresses as well as simply job types), the types of questions that the user will
be asked. Does it cover all degrees, or is it only for students with Computing Science
degrees, and so on ... All these things will define the boundaries of the system.

Sometimes it is also helpful to spell out exactly what will NOT be covered. So, for
example, a clear statement could be made which states that the system will NOT cover
advice on jobs for those with medical and veterinary degrees, or jobs overseas.

The scope and boundaries could also refer to technical issues. For example, they might
state that the resultant system will run on any computer capable of running any version
of Windows after Windows 3.1, but not on any other operating system.

Why is it important to clarify the exact scope and boundaries?

Real world answer: Proper scope definition is critical to a project’s success. It
establishes the boundaries of what the project will and will not accomplish. The scope
statement eliminates any confusion or ambiguity that might still exist after considering
the project’s goal, objectives and high-level deliverables statements. Poorly defined
scope leads to "scope creep", which means that the project’s objectives change as
it progresses. These changes inevitably lead to increased work effort, which in turn
causes project delays, cost overruns, poor team morale and/or customer dissatisfaction.

AH project answer: Proper scope definition is essential to ensure that you embark on
a realistic project. If you don’t define the scope and boundaries, you won’t know when

© HERIOT-WATT UNIVERSITY

16 TOPIC 2. ANALYSIS

you have finished implementing the project, you won’t be able to evaluate it properly,
and finally, you will lose marks!]

Defining Scope and Boundaries

20 min

Now, starting from your project proposal, create clear statement of scope and
boundaries for your project. Hint: write this as a bulleted list, rather than as a paragraph.
This has two benefits - it helps you to clarify your ideas, and it gives you a clear list to
use at the end of your project when you are evaluating what you have produced.

Discuss this with your tutor.

Add the scope and boundaries list to your Record of Work.

Don’t forget to put your name/initials and the date on the page.

Your Record of Work should now include:

2.3.3 Functional requirements

The scope and boundaries define clearly the extent of the project. It is like drawing an
outline map of a country. Now you have to fill in some detail inside the outline. The best
way to do this is to produce a list of functional requirements.

Function requirements = what the product must do!

For example, if the project was to write a program to calculate the cost of sending a
parcel, the list of functional requirements might include:

• attractive welcome screen

© HERIOT-WATT UNIVERSITY

2.3. THE PROJECT SPECIFICATION 17

• all options available as clickable buttons on screen

• user input of destination, weight and dimensions of parcel

• user verification of all inputs

• output displayed on screen, and spoken through speakers

• all colours and fonts complying with latest guidance on accessibility

• and so on ...

Listing Functional Requirements

30 min

Starting from your project proposal, and statement of scope and boundaries for your
project, write a list of functional requirements. Again, a bulleted list is probably the best
way forward.. As before, this has two benefits - it helps you to clarify your ideas, and it
gives you a clear list to use at the end of your project when you are evaluating what you
have produced.

Discuss this with your tutor.

Add the list of functional requirements to your Record of Work.

Don’t forget to put your name/initials and the date on the page.

Your Record of Work should now include:

2.3.4 Specification Review

You should now be at the stage where you have analysed the project proposal, and have
a detailed and precise project specification, comprising the scope and boundaries of the

© HERIOT-WATT UNIVERSITY

18 TOPIC 2. ANALYSIS

project, and a list of functional requirements.

You (as systems analyst) must now agree with yourself (as client) that this is what you
are going to tackle. Hopefully, you will reach an agreement! However, as you review
your specification, you might decide to add some items, or limit the scope. If so, now is
the time to make these changes.

2.4 Project Planning

Having established exactly what is required, the next stage is to develop a project plan.

The project specification states what is to be produced.

The project plan will state how you are going to do it.

There are 3 important aspects to a project plan. These are:

• dividing the overall task into manageable sub-tasks

• estimating realistic times for carrying out these tasks

• setting up a system for monitoring progress and managing your time

We will look at each of these separately.

2.4.1 Sub-tasks

In "real life" software development projects, this stage not only requires identifying the
different tasks to be carried out, but also allocating these task to members of the project
team, or to groups within the team. Unless you are attempting a collaborative project,
you will be doing all of these yourself.

As a first step, you can divide the project up into sub-tasks corresponding to the 7 stages
of the software development process:

1. Analysis - already done

2. Design

3. Implementation

4. Testing

5. Documentation

6. Evaluation

7. Maintenance - not required for Advanced Higher

Almost certainly, you will need to add in research at an early stage - probably
before the design stage. All the stages down to testing are required for the unit
assessment. Documentation and evaluation will be included in the project report for
course assessment.

© HERIOT-WATT UNIVERSITY

2.4. PROJECT PLANNING 19

So the list now looks like:

1. Analysis - already done

2. Research

3. Design

4. Implementation

5. Testing

6. Project Report

The next stage is to break these down into smaller tasks. These will depend on the
specific nature of your project. Here are some ideas which might be appropriate:

Research

• investigating different ways of implementation (e.g. different programming
languages or software)

• finding out how to implement (whatever)

• looking at similar products and considering the best approach

• selecting a strategy / programming language / software development environment

Design

• drawing sketches of the user interface

• creating dataflow and structure diagrams

• writing pseudocode for modules

Implementation

• creating user interface forms

• creating test data and a test plan

• coding main structure

• coding section 1

• coding section 2

etc ...

• module testing and debugging

Testing

© HERIOT-WATT UNIVERSITY

20 TOPIC 2. ANALYSIS

• component testing

• acceptance testing

Project Report

• collating evidence from record of work

• writing user documentation

• writing technical documentation

• writing an evaluation report

Listing Project sub-tasks

30 min

Create a table - with 5 columns.

Label the columns (from left to right) sub-task, time, target date, completed,
comments.

In the left hand column, list all the sub-tasks for your project, in the order you would
expect to carry them out. It should look like this:

Sub-task Time Target Date Completed Comment
Project
proposal

Specification

Research
...
...

etc

Get your tutor to check this before you go ahead.

2.4.2 Time planning

Now that you have mapped out the work that is in front of you, you need to think about
time-planning.

For a real-life software development project, this is absolutely vital, as the main cost for
most projects is staff time. Suppose a project is being tackled by a team of 25 analysts,
programmers and other staff, on an average monthly pay of £2000. The project plan
estimates that the project will take 2 years to complete. The staffing costs will be £2000
x 25 staff x 24 months = £1.2 million. The project manager (from past experience!)
decides to build in a 20% allowance for project slippage, so goes to the finance director
asking for a staffing budget of £1.4 million.

Unfortunately, for a variety of reasons, the project takes 8 months longer than expected,
even with 4 new team members added during the last 8 months to speed thing up. The
final staffing costs come to £1.7 million, an overspend of £300,000. In addition, the client
claims a £500,000 discount for failure to complete the project on time, so the company
ends up almost £1 million worse off than expected.

© HERIOT-WATT UNIVERSITY

2.4. PROJECT PLANNING 21

In your case, no-one is paying you for doing your Advanced Higher project. However, if
your time-planning is unrealistic, you may lose vital marks as you may run out of time to
complete the work.

So, now it is time to plan your time!

Estimating Project Timescale

30 min

You have a table listing all the sub-tasks.

Stage 1: Go down this table, and estimate the time required for each sub-task and enter
it in the second column. The times for the first 2 items will not be estimates, as you have
already done them!

Add up the times. You are expected to spend around 30 hours (40 as an absolute
maximum) on the design, implementation and testing, and another 10 hours or so on the
project report. If your estimates fall within this range, then that is fine. If your estimates
add up to more than this, you need to go back to your specification, and cut it back.
Either reduce the scope of the project, or remove some functional requirements. It
may be possible to identify some aspect which would be time consuming but would not
contribute much to the overall mark you get, for example, if you were creating a web site,
there is no point creating lots of similar pages - instead implement a couple of examples
only). Discuss this with your tutor.

If necessary, go back and annotate your specification to reflect this. Then amend your
time plan. (This is an example of the iterative nature of the software development
process).

The final section - the project report - should be possible within about 10 hours.

Stage 2: Estimate how much time you will be able to spend each week. Remember that
this will vary over the year. You might be able to spend 4 hours per week most of the
time, but less than that during holidays or when you have assessments.

Use this information, and a calendar, to write a target date against each sub-task. Allow
some slippage - you might be off ill for a week, or held up because some task turned out
more complex than you had imagined.

Now check that the target date for the final section is in advance of when your tutor
needs to receive it! If so, that’s fine. If not, you are going to have to spend more time per
week than you had allocated.

Once you and your tutor are satisfied that you have a realistic time plan, you can print it,
and file it in your Record of Work. Print a second copy to give to your tutor.

Your Record of Work should now include:

© HERIOT-WATT UNIVERSITY

22 TOPIC 2. ANALYSIS

2.4.3 Monitoring and management

The time plan you have created is a vital tool for managing and monitoring your project.
You should refer to it throughout the project. As you complete each section or sub-task,
you can fill in the actual date you completed it. Add any comments as you go along.

After a while it will start to look like this:

Table 2.1:

Sub-task Time Target Date Completed Comment

Project
proposal

2 hours 24 Aug 24 Aug

Specification 2 hours 26 Aug 26 Aug

Research into
...

6 hours 4 Sept 9 Sept (partly) Most done,
wrote off for
more info

Selecting
Method

1 hour 5 Sept 10 Sept

Design of user
interface

2 hours 7 Sept

etc

In this example, the project is already behind the time plan by a few days, and the
research has not been completed.

Does it matter?

© HERIOT-WATT UNIVERSITY

2.5. RESEARCH 23

It depends!

You should have built in some extra time for unforeseen difficulties. If so, you should be
able to catch up later. Keep an eye on any slippage, though, so that it doesn’t become
unmanageable. If you start to get too far behind, then you will need to take corrective
action. That could mean spending some extra time for a couple of weeks to catch up,
or discussing with your tutor whether you need to amend your proposal. The action you
take will depend on your situation and the reasons for any delay.

On the other hand, you might find you are ahead of schedule. Good! But don’t become
complacent. Something later on might hold you up, so you will be glad to have some
time in hand.

Monitoring and managing are very important. Use the table for monitoring. Don’t cheat.
Be honest with yourself. And use the information to make good management decisions.

2.5 Research

Research is not meant to be a major part of your AH project, but you will almost certainly
need to do some. The types of information you may need to uncover could include:

• a programming technique that you will need

• comparing and selecting an item of hardware to buy

• searching a module library for an existing module you could use

• finding out the needs of potential users of your system

• considering alternative programming languages which you could use

• finding out if a similar project has been undertaken

There are many other possibilities. The methods you use will depend on the particulars
of your project. Some important things to remember include:

• be methodical about your research

• keep records of where you look and what you find

• don’t waste time

2.6 Selecting strategies

Once you have carried out research, you will be ready to make some decisions about
strategies you will use. It is easy to rush straight on with the project without thinking
carefully about the best way forward.

For example, if your project requires some high level language programming, you will

© HERIOT-WATT UNIVERSITY

24 TOPIC 2. ANALYSIS

have to decide which programming language and environment is most appropriate to
use.

If your project involved creating web pages, you will need to make a decision about
which web page editor to use, or whether to code directly in HTML.

You may have to decide whether to implement your solution by developing software
from scratch using a high level language, or by adapting an existing application using a
scripting language.

Whatever decisions you have to make, you must be able to justify them. That is, you
have to be able to say, "I considered X, Y and Z, and chose Y because ..." . Such
decisions should be based on sensible criteria.

Here is an example of using criteria to select a strategy - in this case, a choice is to
be made between Hyperstudio (a multimedia authoring tool) and 2 high level languages
(Visual BASIC and C++)

This first-pass analysis leaves you with no options. So, there is now a need to do some
further research to identify if there are other options that might be considered. If this still
leaves you with no options, you should discuss this with your tutor and either select a
different project or build time into your plan to allow for a learning period.

Criteria Hyperstudio Visual BASIC C++

Development tools Supports drag
and drop for the
interface. A text
editor is used in
enter Hyperlogo
scripts.

Visual Basic has
a number of
sophisticated editing
tools. Code can be
formatted and
different colours can
be used to highlight
remarks

Extensive text
editing and
debugging tools
are available.
Modules can be
linked to provide
ease of adding and
removing different
sections of code.

Documentation Manual plus
extensive on-line
support via the
HyperStudio web
site.

Very limited printed
documentation but
the on-line library is
extensive.

The manuals are not
available in school
and the on-line
documentation is
extremely difficult.

Previous
experience

I have had
no previous
experience of
using HyperStudio
and so would have
to spend a lot of
time learning how
to use the package
and how to write
code in the scripting
language.

Visual Basic has
only just become
available in the
school and I am a
bit worried about
how well I can use
something that
has not been used
before in school.

I would like to learn
to use C++ as it
would be very useful
in the future. The
main problem is that
I have never used
it before and would
need to spend a lot
of time

The final choice:

© HERIOT-WATT UNIVERSITY

2.6. SELECTING STRATEGIES 25

Criteria Hyperstudio Visual BASIC C++

Viability: Which
environment will I
use?

HyperStudio has
many advantages
but the scripting
language will take
too long to learn for
this project.

Although I would like
to use Visual Basic
I feel that it is not
a good idea due to
the fact that we have
only just got it in the
school and there will
be a lot of learning
involved to get to a
stage where I can do
this project.

Not a viable option
due to the lack of
resource materials
and my lack of
experience with this
type of language.

Selecting a strategy

30 min

If you have some important decisions to make about the way you will solve your problem:

• list the options

• decide on the criteria

• use the criteria to evaluate the options - a table like the one above is a good idea

• make a decision which you can justify

Note: you may find that you have to go back to do some more research to complete this
activity.

File your table of criteria and your decision on your Record of Work. Keep any research
notes and file them in your Record of Work, which should include:

© HERIOT-WATT UNIVERSITY

26 TOPIC 2. ANALYSIS

2.7 Resources

In "real life" projects, there are also usually resource management issues to consider.
The project manager will have a set budget within which to work. It is important to
consider, at the start, all the resources which may need to be purchased, and ensure
that there are enough funds to buy them all. Where new resources are required,
consideration must be made of when they will be required, so that they can be ordered
in advance. Some resources may take several weeks between ordering and delivery, so
it is vital that they are ordered early so that the project is not delayed.

This might apply to your project too. Use these questions as a checklist:

• Do I already have everything I will need?

• Do I need extra software?

• Do I need extra hardware?

• Can I afford to buy these?

• How long will they take to arrive?

• How long will it take to get new software installed?

Making a resource list

Make a list of all the resources you will require. Include:

© HERIOT-WATT UNIVERSITY

2.8. SUMMARY 27

• Hardware

• Software

• Other resources

Alongside each item, put a tick if you have it already.

For each item without a tick, decide what you are going to do, and note it down as an
action point.

Tick off these action points as you complete them.

File this in your Record of Work, and keep it up to date.

Your Record of Work should now include:

2.8 Summary
• The main elements of the analysis stage of the software development process

include creating a project specification, project planning, carrying out research
and selecting strategies.

• The problem specification is agreed between the client and the systems analyst
before proceeding with any work on the project

• The problem specification should include scope and boundaries, and functional
requirements

© HERIOT-WATT UNIVERSITY

28 TOPIC 2. ANALYSIS

• A project plan includes division of the task into sub-tasks, allocating time to these
tasks, and a system of monitoring progress

• Research may be required in order to select and justify appropriate strategies for
a project

• It is important to identify all resources that may be required

2.9 Revision Questions

Q5: The project specification:

a) is a formal document agreed between the client and the systems analyst
b) is a rough outline of the project written by the client
c) is the starting point from which a project proposal is developed
d) is one of the functional requirements of the project

Q6: Scope and boundaries:

a) describe the functional requirements of the project
b) are part of the project plan
c) should be included in the project specification
d) should be clarified before the analysis stage

Q7: Project planning involves

a) defining the scope and boundaries of the problem
b) identifying sub-tasks, times and target dates
c) working out a detailed schedule which cannot be changed
d) listing the functional requirements of the solution

Q8: Selecting a strategy

a) does not need to be done until the implementation stage
b) is important in "real life" projects, but unimportant for Advanced Higher
c) is important, but does not need to be based on formal criteria
d) should be based on research and defined criteria

Q9: Your Record of Work

a) already contains several items including a specification and project plan
b) should be a formal record which you write up at the end of the project
c) should only contain the project specification at this stage
d) is an optional extra which you may or may not find useful

© HERIOT-WATT UNIVERSITY

29

Topic 3

Design

Contents

3.1 Prior Knowledge and Revision . 30

3.2 Introduction . 31

3.3 User Interface Design . 31

3.4 Design Methodologies . 33

3.5 Design Notations . 33

3.5.1 Data Flow Diagrams . 34

3.5.2 Structure Diagrams . 34

3.5.3 Pseudocode . 36

3.6 Summary . 38

3.7 Revision Questions . 38

Learning Objectives

After studying this topic, you should be able to:

• describe the main elements of the design stage of the software development
process

• describe aspects of good user interface design

• create a user interface design for your project

• explain and exemplify top-down design and stepwise refinement

• exemplify the use of data flow diagrams, pseudocode and structure diagrams

30 TOPIC 3. DESIGN

3.1 Prior Knowledge and Revision

You should already know the seven stages of the software development process:
Analysis - Design - Implementation - Testing - Documentation - Evaluation -
Maintenance:

Design is the second stage, coming after analysis and before implementation. The
starting point of the design stage is the project specification produced during the analysis
stage. This specification is a clear, agreed description of the project, including scope and
boundaries and all the functional requirements. From this, the project team can begin to
design a solution to the problem.

Revision

Q1: The first 3 stages of the software development process, in order, are:

a) Design, Analysis, Implementation
b) Analysis, Design, Implementation
c) Documentation, Evaluation, Maintenance
d) Analysis, Implementation, Testing

Q2: The starting point for the design stage is:

a) the project proposal written by the client
b) the project proposal agreed between client and analyst
c) the detailed specification agreed between client and analyst
d) the initial meeting between client and analyst

Q3: The design stage is:

a) an optional extra, which can be omitted for simple projects
b) essential, even in small projects
c) important in "real-life" project, but not required for Advanced Higher Computing
d) often combined with implementation

© HERIOT-WATT UNIVERSITY

3.2. INTRODUCTION 31

3.2 Introduction

���
����

�	��
�

��	
���������

�������

�����������

���
�����

�����������

In this Topic, we will develop the ideas you already know about the design stage of the
software development process.

You will then apply this to your own Advanced Higher Computing project. As you do so,
you will produce items of evidence to file in your Record of Work.

There are two main aspects of software design to consider. You will need to design
the user interface of your software, and you will need to design the structure of the
software (the algorithm).

3.3 User Interface Design

During the design stage, you will need to make decisions about the user interface of
your application.

As you already know, there are 3 main classes of User Interface:

• command driven interfaces

• menu driven interfaces

• graphical user interfaces (GUI)

It is often assumed that GUIs are the best. However, that will depend on the context for
your application. In some cases, a command line interface may be more appropriate.
The choice of interface type will depend, not only on the user group of your application,
but also on your ability and experience. Visual languages and authoring tools certainly
make GUIs much easier to develop than they used to be.

Once you have decided on the type of interface, there are many guidelines available for
"good interface design". Some of these are listed below.

Good interfaces should:

© HERIOT-WATT UNIVERSITY

32 TOPIC 3. DESIGN

• be as simple as possible

• give clear prompts to the user

• be consistent

• make sensible use of colour

• allow the user to "undo" the last action

• provide on-line help

You can find many more lists in textbooks and on web sites. Different sources emphasise
different aspects. You will be aware of many of these criteria from your own experience.

Evaluating user interfaces

10 min

Think about some user interfaces you have used recently. They don’t need to be
computer-based. For example, you might think about some domestic appliances.

• Make a list of 4 different user interfaces (2 computer-based, 2 non-computer-
based)

• For each one write 2 good aspects of the interface

• For each one, write 2 improvements which could be made to the interface

• Compare your answers with another student, or discuss them with your tutor

Designing the user interface

120 min

For your project, design all aspects of the user interface.

This may involve sketching how you want the screen to look while the application is
running. Include as much detail as possible - colours, objects, icons, text (size, colour,
font), interactions.

Label these designs, and file them in your Record of Work which should now include:

© HERIOT-WATT UNIVERSITY

3.4. DESIGN METHODOLOGIES 33

3.4 Design Methodologies

The standard design methodology for developing software is called top down design
with stepwise refinement. You should apply this methodology to your AH Project.

There should be nothing new to learn here - just a reminder of what you learned in
the Higher Software Development unit, and have been applying to all your software
development work in Higher and Advanced Higher. The use of top down design with
stepwise refinement becomes even more important now that you are about to begin a
major software development project.

Reminder

Top down design starts with an overall picture or concept of what the program should
do. From this starting point, the designer can break the overall task up into smaller
tasks. These smaller tasks, in turn, can be broken down into sub-tasks, and so on
Eventually detailed design is applied to each sub-task. Step by step, the fine detail is
worked out. The process is called stepwise refinement.

3.5 Design Notations

Once again, there are no new ideas here. You should have been using at least 2
design notations for all software development work through Higher (and earlier) and

© HERIOT-WATT UNIVERSITY

34 TOPIC 3. DESIGN

into Advanced Higher.

The two design notations that you are most likely to have used are:

• Pseudocode

• Structure charts

You may also have used data flow diagrams.

Here is a quick reminder of all three of these:

3.5.1 Data Flow Diagrams

A data flow diagram may be used in both the analysis and design stages of the software
development process. It simply shows the data going into and out of any program
module. Data flow diagrams can be drawn for a whole program or for any module within
the program.

For example, Figure 3.1 shows a data flow diagram for a simple program to process pay
and tax for an employee:

��������������

����

	�������

����	��

�����	��

������������

Figure 3.1:

This overall data flow diagram helps the designer to think about all the data that will
be input and output from the program. This, in turn, will help in the design of the user
interface.

Data flow diagrams can be drawn for each module, to help the designer plan the
parameters and variables which will be inputs and outputs of each module.

3.5.2 Structure Diagrams

During the process of top down design, it is often useful to show how the modules and
sub-modules are related using a diagram. There are many variations to be found in
different textbooks. Some use special symbols or different shaped boxes to indicate
different types of sub-program. It doesn’t really matter, so long as the diagrams you
draw are helpful to you in designing the program.

Here is an example of a structure diagram for a program:

© HERIOT-WATT UNIVERSITY

3.5. DESIGN NOTATIONS 35

�����������
�
����

��	��������
�
����

������
��	��

�������
�
����

��
��	��

��
��	�� �
����

�
����

����
��	��

���
��	��

����
��	��

 ����
���	��

!��	
��
���	��

 �������
���	��

���
��	�� �
����

 �������
���	��

The diagram shows that the main program is sub-divided into 3 modules. Each module
is named. Two of these modules are further sub-divided into 2 sub-modules. The
diagram also shows clearly the flow of data between modules. In fact, the structure
diagram is really several data flow diagrams interconnected.

A structure diagram for a whole program can become very complex. If so, you can
draw a top level structure diagram, showing only the main program and its first level
sub programs. Further structure diagrams can be used for each of the first level sub-
programs.

�����������
�
����

��	��������
�
����

������
��	��

�������
�
����

��
��	��

��
��	�� �
����

�
����

������
��	��

����
��	��

���
��	��

����
��	��

���
��	��

© HERIOT-WATT UNIVERSITY

36 TOPIC 3. DESIGN

�������
�
����

 ����
���	��

!��	
��
���	��

 �������
���	��

�
����

 �������
���	��

Some people think in pictures and diagrams. If you are that type of person, you should
use structure diagrams during the design phase of your project.

Some people find it easier to use words only. Pseudocode is an alternative design
notation using words rather than diagrams.

3.5.3 Pseudocode

Pseudocode is another way of describing the design of a program. It uses a hybrid
language, using some words of normal English, and some words of the intended
programming language which will be used to implement the program.

Here is the same program design as in the previous section, described using
pseudocode rather than a structure diagram:

Produce best solution:

1 Get good input out: good input

2 Compute best solution in: good input out: solution

3 Put out solution in: solution

1.1 Read input out: raw input

1.2 Edit input in: raw input

3.1 Format output in: solution out: formatted output

3.2 Display output in: formatted output

This contains exactly the same information as the structure diagram. Some people
find the diagram more useful in helping them to design a solution, other prefer the
pseudocode. You can use either!

However, many people find it best to use a combination of both design notations. They
may use a structure diagram for the top level design, breaking the program down into
modules which can be implemented using a single sub-program, then use more detailed
pseudocode to design the algorithm within each sub-program. Detailed pseudocode
might look like this:

�� ������	
 �

�� 	��� ��� ���	 ��	 ��� ���	�� �����

�� ��� �����	 �� ���	� �� ����

�� ��

© HERIOT-WATT UNIVERSITY

3.5. DESIGN NOTATIONS 37

�� ����	� ���	�� ���� �� �������������

�� �� ����� ����

�� ���	����� �����

�� ��� ��

 � ���� �� ��!� ������� �� ��� ����

��� ����� ����� ������	 " ��

��� 	��	� ���#�	 �� ����		�����

Note: some designers number the lines of pseudocode, some don’t - again it is a matter
of what you find helpful.

Designing your program

240 min

Now is the start of the difficult bit! You need to design the solution to your project.
You should use top down design with stepwise refinement as your methodology. You
can use any combination of data flow diagrams, structure diagrams and pseudocode as
your design notation.

All your design work should be kept and filed in your Record of Work, which should now
include:

Remember to update your project plan, showing that you have completed the design
stage of your project.

You have completed the design phase of your project, and are now ready to move on to
implementation.

© HERIOT-WATT UNIVERSITY

38 TOPIC 3. DESIGN

3.6 Summary
• design can begin once the analysis stage has established a clear project

specification

• the design stage involves designing the user interface and the program algorithm

• good user interface design is very important

• the algorithm will be designed using top-down design with stepwise refinement

• data flow diagrams, pseudocode and structure diagrams are all useful design
notations

• data flow between modules or sub-programs should be shown clearly at the design
stage

• evidence of design must be included in your Record of Work

3.7 Revision Questions

Q4: During the design stage,

a) the user interface must be created
b) the user interface and program structure/algorithm must be designed
c) data flow between modules can be ignored
d) actual coding can begin

Q5: The design methodology which should be applied is:

a) structure diagrams or pseudocode
b) data flow diagrams
c) top down design with stepwise refinement
d) stepwise design with top down refinement

Q6: Structure diagrams and pseudocode are

a) design methodologies
b) design notations
c) useful tools but not required for your record of work
d) aspects of the program specification required before design begins

Q7: Data flow between modules

a) can only be shown on a structure diagram
b) can only be shown using pseudocode
c) does not need to be shown on either structure diagrams or pseudocode
d) can be shown on either structure diagrams or pseudocode

Q8: Your Record of Work

a) should now contain a specification, a project plan and evidence of design
b) is an optional extra which you may or may not find useful

© HERIOT-WATT UNIVERSITY

3.7. REVISION QUESTIONS 39

c) should only contain the project specification at this stage
d) is a formal record which you write up at the end of the project

© HERIOT-WATT UNIVERSITY

40 TOPIC 3. DESIGN

© HERIOT-WATT UNIVERSITY

41

Topic 4

Implementation

Contents

4.1 Prior Knowledge and Revision . 42

4.2 Introduction . 43

4.3 Creating a test plan . 43

4.4 Implementing your design . 45

4.5 Keeping your Record of Work . 46

4.6 Summary . 47

Learning Objectives

After studying this topic, you should be able to:

• describe and create a test plan

• complete the implementation of your design

42 TOPIC 4. IMPLEMENTATION

4.1 Prior Knowledge and Revision

You should already know the seven stages of the software development process:
Analysis - Design - Implementation - Testing - Documentation - Evaluation -
Maintenance:

Inexperienced programmers might be tempted to plunge directly into implementation,
but by now you should understand the importance of spending time on analysis and
design before beginning implementation.

If the analysis and design has been done effectively, implementation should be
straightforward. Once completed, the product can be tested and then documentation
created to support users.

Sometimes, however, during implementation, problems occur which may lead to further
analysis, or changes in design. Similarly, faults found at the testing stage may require
certain aspects of implementation to be changed. This is why the software development
process is often described as an iterative process. Figure 4.1 is a simplification of reality.
Still, it makes sense to follow the stages in their correct order, and reduce the need to
review earlier stages.

Implementation means getting involved with the computer. Choices made at the design
stage are now turned into reality. This may mean using a high level programming
language or some other type of development environment, like a multimedia authoring
package.

Revision

Q1: Implementation

a) is the first stage of the software development process
b) follows analysis and design in the software development process
c) is the final stage of the software development process
d) follows testing in the software development process

Q2: Time spent on analysis and design

a) is time wasted
b) is important for AH Computing, but unimportant for "real life" projects
c) can save time at the implementation stage
d) slows down the whole development process

Q3: During implementation

a) you will require to make further design decisions
b) you will use a software development environment
c) you will evaluate the solution to your problem
d) you will certainly use a high level programming language

© HERIOT-WATT UNIVERSITY

4.2. INTRODUCTION 43

4.2 Introduction

���
����

������

����	�	�����

�������

�����������

���
�����

�����������

Figure 4.1:

Most of this section is about YOUR project.

From the analysis and design that you have carried out, you are now ready to implement
your solution. But there is one more thing to consider - the creation of a test plan.

4.3 Creating a test plan

You may be surprised to find that we’re talking about testing now, at the start of the
implementation stage. According to the 7 stages of the software development process,
testing comes after implementation, not before it. This is correct! You can’t test the
program before it has been implemented.

However, a test plan should be created at this stage, although the plan won’t
be carried out until later. In "real life" major software development projects,
the test plan is a lengthy and detailed document. For example, look at
http://www.epri.com/eprisoftware/processguide/testplan.html. There you will see what
a test plan could include.

For your project, the test plan can be less ambitious!

What should be covered?

You already know that testing should be

• systematic (following a logical order)

• comprehensive (covering every function defined in the functional specification)

© HERIOT-WATT UNIVERSITY

http://www.epri.com/eprisoftware/processguide/testplan.html

44 TOPIC 4. IMPLEMENTATION

The program should be tested with

• normal test data

• extreme test data (boundary conditions)

• exceptional test data

And testing can be at different levels:

• module testing (each sub section of the program tested separately as it is
developed)

• component testing (groups of modules tested together)

• beta (acceptance) testing (final testing of the competed program)

The exact details of the test plan will depend very much on your program, and how it is
structured, and how you will implement it. However, the guidelines above will help you
to structure your test plan. It should be systematic and comprehensive, and cover all
three types of test data.

Creating a test plan for your project

30 min

List all the sub-programs within your design.

List all the functional requirements.

Put these in tables, like these:

Sub-program Tested Comment

Functional requirements Tested Comment

Most of the sub-programs can be tested individually as they are implemented. As you
do so, tick them off, and add any comments (like, "works correctly" or "OK, but could be
tidied up if time allows" or "doesn’t work, will need to get some help").

The functional requirements are more likely to be tested at the end, once you have
completed all the implementation.

Some modules and functions either do the job or not. They don’t depend on input data.
However, many will need to be tested with a range of test data.

© HERIOT-WATT UNIVERSITY

4.4. IMPLEMENTING YOUR DESIGN 45

For any aspects of your program which will need to be tested with different types of test
data, make up test data tables, giving reasons for your choice of data, and space to fill
in results:

Testing ... (insert function or module being tested here)

Type Test Data Reason Expected
result

Actual
result

Comment

4.4 Implementing your design

Finally, it is now time to start implementing your design! Check back to your project plan
to see what order you have planned to follow. You may decide to alter the order a little,
now that you have a clear design to follow. Keep an eye on the time and target dates.

Remember to follow all the techniques of good programming you have learned in Higher
and Advanced Higher Software Development. These include

• including internal commentary

• using meaningful identifiers (variables and procedure names)

• using parameter passing and local variable rather than global variables

• modular programming (use existing modules if they exist)

© HERIOT-WATT UNIVERSITY

46 TOPIC 4. IMPLEMENTATION

You can save yourself a lot of work later on, if you keep a record of your implementation
as you go along.

4.5 Keeping your Record of Work

You will probably spend 20 hours or more on implementation, spread over several weeks
or months. You should keep your record of work up-to-date at all times. Why not set
aside 10 minutes at the end of every session to update your Record of Work.

In your Record of Work, you should keep

• printouts / hard copies of your program at each stage of development - make sure
you label them carefully, with the date and version number; annotate them with
any problems or notes about further work required;

• notes of any unit testing you carry out - these can be anything from simple
comments "it works!" written on a program listing to annotated screen dumps
showing part of a program working correctly with given test data

You should also make sure that both your project plan and test plan are filled in as you
go along.

Your Record of Work will be like a scrap book or diary showing what you have done. It
may be required as evidence for unit assessment, so don’t forget about it. On the other
hand, it is not meant to be a work of art or a formal project report, so don’t waste time
re-typing things or making them look pretty.

© HERIOT-WATT UNIVERSITY

4.6. SUMMARY 47

4.6 Summary
• a test plan should be created before implementation begins

• a test plan describes what will be tested, how it will be tested, and when it will be
tested

• good programming techniques should be applied during implementation

• the record of work should be maintained throughout the process

• module testing during implementation should be recorded against the test plan

© HERIOT-WATT UNIVERSITY

48 TOPIC 4. IMPLEMENTATION

© HERIOT-WATT UNIVERSITY

49

Topic 5

Testing

Contents

5.1 Prior Knowledge and Revision . 50

5.2 Introduction . 51

5.3 Carrying out your test plan . 51

5.4 Evidence of Testing . 52

5.5 Rectifying Errors and Bugs . 53

5.6 A User Questionnaire . 54

5.7 Summarising your results . 56

5.8 Summary . 57

Learning Objectives

After studying this topic, you should be able to:

• carry out a test plan

• produce a user questionnaire

• summarise test results

• rectify errors and bugs

50 TOPIC 5. TESTING

5.1 Prior Knowledge and Revision

You should already know the seven stages of the software development process:
Analysis - Design - Implementation - Testing - Documentation - Evaluation -
Maintenance:

You also know that the software development process is iterative. That means that
sometimes, you have to repeat stages to get it right. This is particularly true of
implementation and testing.

You know that testing should be both systematic and comprehensive. Any software
should be tested under a range of conditions, and using normal, extreme and
exceptional test data.

Testing should be based on a test plan created before implementation. The test plan
should include module testing, component testing and beta (acceptance) testing.

Revision

Q1: Testing

a) is the final stage of the software development process
b) follows implementation in the software development process
c) takes place before implementation in the software development process
d) is sometime called maintenance

Q2: Test data designed to test the software under boundary conditions is called

a) normal test data
b) acceptance test data
c) extreme test data
d) exceptional test data

Q3: The testing of individual sub-programs as they are implemented is called

a) component testing
b) module testing
c) beta testing
d) comprehensive testing

Q4: Comprehensive testing means

a) testing of every possible combination of input data
b) testing every function defined in the functional specification
c) getting users to test the final product
d) testing with exceptional test data

© HERIOT-WATT UNIVERSITY

5.2. INTRODUCTION 51

5.2 Introduction

���
����

������

��	
���������

	���

�����������

���
�����

�����������

Once again, most of this section is about YOUR project.

You should now have a completed project, and a test plan that you devised earlier. You
will apply this test plan to your project. You should already have tested each module or
sub-program as you were implementing them; now you are going to test all the functional
requirements in a systematic way.

5.3 Carrying out your test plan

Refer to your test plan in your Record of Work. It will look something like this (except that
you should already have filled in the first columns (lists of sub-programs and functional
requirements). Also you have probably filled in the other columns of the first table,
showing that you have tested each sub-program (and corrected any bugs that you
found). If there are any of these sub-programs that you haven’t tested, do so now.

Sub-program Tested Comment

Functional requirements Tested Comment

Now you must carry out systematic testing against all the stated functional requirements
which you have listed above.

© HERIOT-WATT UNIVERSITY

52 TOPIC 5. TESTING

Where appropriate, you should test using a range of test data (normal, extreme and
exceptional).

Devising test data

30 min

If you have not already done so, create test data for each functional requirement.
Usually, the best method is to create a table to display your test data and the results,
like this:

Testing ... (insert function or module being tested here)

Type Test Data Reason Expected
result

Actual
result

Comment

Normal 5, 10, 15 Common
input

"use widget
B54Xa2"

"use widget
B54Xa2"

OK

In some cases, a table of testing is not really appropriate. The main thing is that you
show what you are testing, and you keep a record of results. Remember to fill in the
"expected result" column BEFORE you carry out the test(s).

5.4 Evidence of Testing

For your Record of Work, you should keep some evidence of testing. In most cases, the
tables of results are sufficient evidence. However, it is also useful to have some "real"
evidence in the form of screen shots. In particular, you should obtain screen shots to
illustrate what appears on the screen at any stage of your program. So perhaps you
might generate screen shots of the opening or title page, of an input screen, and of the
output of the program (or similar for your program). Note that there is no requirement
to create screen shots of every test you carry out! You may test many functions of
the program with many different sets of test data, but only need 3 or 4 screen shots to
illustrate how the program looks on screen.

All evidence of testing - tables of results, print outs, screen shots - should be filed in your
record of work, and carefully labelled to explain their relevance.

© HERIOT-WATT UNIVERSITY

5.5. RECTIFYING ERRORS AND BUGS 53

5.5 Rectifying Errors and Bugs

As a result of testing, you have almost certainly uncovered some errors or bugs in your
software. If so, you should correct these as they are discovered. Keep a record of any
corrections you make - simple notes written on the earlier print-outs may be enough. If
an error requires a major rewrite on any part of the software, print it out and file it in your
record of work, with a hand-written note on the print-out explaining why you have made
the changes. You should implement some logical use of version numbers, and make
sure you label all print-outs accordingly.

Beware of the possibility of correcting a bug causing a new error in some part of the
software that you have already tested. If you have applied the principles of modular
programming, this should be unlikely to happen, but it is usually a good idea to repeat
some earlier tests just to be on the safe side.

Sometimes, students think that they should hide and/ or destroy all evidence of bugs
or errors, and simply keep evidence of the completed (perfect!) program. This is not
recommended! Your tutor will be awarding marks for your ability to correct errors, so
keep the evidence to show that you have managed to fix any problem that occur.

© HERIOT-WATT UNIVERSITY

54 TOPIC 5. TESTING

5.6 A User Questionnaire

So far, you have carried out module testing and systematic and comprehensive testing
of the functions of you program. You have tested your own program; as a result, you
may have been "blind" to any weaknesses. At this stage, you are ready to carry out
some acceptance (or beta) testing. That means asking some potential users to test the
software for you.

In "real life" software development projects, beta testing can be very extensive. For
example, Microsoft distributed half a million beta versions of its Office 2003 software for
potential users to try and test.

Many software companies take a more restricted approach to beta testing, and ask
users to apply to be beta testers. See, for example, the following web site:

http://thematrixonline.warnerbros.com/web/beta/signup.jsp

You could allow a group of your class-mates to test your software for you. Your teacher
may also be willing. Another possibility is to use the SCHOLAR forum to find students
in other centres who might be willing to carry out some beta testing for you.

The simplest way is to give your tester(s) a copy of the software, and ask them to try it
out and report any errors, bugs or weaknesses that they find. This approach is useful,
but it is often more effective to give the testers some structure- pointing them to what
you want them to test.

One useful way to do this is to create a questionnaire. Creating a questionnaire is not
as easy as it might seem.

Here are some summary hints:

• give the tester some guidance on which parts of the software to test

• ask a limited number of clearly worded questions (see below)

• keep your questionnaire to a single sheet of paper

• set a date for its return

Here are some example questions from a beta testing questionnaire on the web: (you
will find the complete list at www.supermemo.com/archive/beta/Beta2002q.htm)

1. What operating systems did you test on? What browser versions?

4. What are the top three bugs that have not yet been removed?

7. What are your top three dislikes about SuperMemo 2002?

8. Did you read on-line documentation? What should be changed in the structure? Or
in style?

9. Are you aware of any documentation errors?

14. What is the most unclear concept/component of SuperMemo 2002?

Beta Testing

60 min

Create a short user questionnaire.

© HERIOT-WATT UNIVERSITY

http://thematrixonline.warnerbros.com/web/beta/signup.jsp
http://www.supermemo.com/archive/beta/Beta2002q.htm

5.6. A USER QUESTIONNAIRE 55

Ask you tutor to check it before you use it.

Find some suitable testers.

Provide them with a copy of the questionnaire and software.

Set a deadline for return of the questionnaire.

When they are returned, file them in your Record of Work.

After the questionnaires come back to you, you may (or may not) need to take action.

© HERIOT-WATT UNIVERSITY

56 TOPIC 5. TESTING

Here is a flow chart of what you might need to do

����	�"
���
��	����#

�����$���
�������%����$��#

��	����$���������
�����������

������&���$���
%��������'

%����$��'

� ���

� ���

5.7 Summarising your results

You should now have completed the testing

• module testing during implementation

• systematic testing of the functionality (by you)

• acceptance/beta testing (by someone else)

In your Record of Work, you should have

• your test plan

• the completed tables of modules and functions

• tables of testing with different types of test data

• the results of any beta testing

Summary of Testing

30 min

You should now summarise the results of testing. This could be quite brief, referring to
the documents listed above as references.

You should summarise

• the types of testing you carried out

• any significant bugs or errors that you discovered, and have now rectified

© HERIOT-WATT UNIVERSITY

5.8. SUMMARY 57

• any significant bugs or errors that you have been unable to rectify

• any minor weaknesses that you have decided do not need to be dealt with

In total, this should be no more than 1 page of A4. Add this to your Record of Work.

You have now completed all the stages required to pass the unit.

5.8 Summary
• testing should follow implementation, and be based on the test plan

• testing should be comprehensive and systematic

• testing should include module testing during implementation

• all functional requirements should be tested using a range of test data

• acceptance (beta) testing should be carried out by independent testers

• errors and bugs identified during testing should be rectified and/or documented

• a summary of testing should be produced

© HERIOT-WATT UNIVERSITY

58 TOPIC 5. TESTING

© HERIOT-WATT UNIVERSITY

59

Topic 6

Project Report

Contents

6.1 Prior Knowledge . 60

6.2 Introduction . 60

6.3 Evidence required for Unit Assessment . 60

6.4 Evidence required for Course Assessment . 62

6.5 User and Technical Documentation . 64

6.6 Evaluation Report . 67

6.7 Summary . 69

Learning Objectives

After studying this topic, you should be able to:

• give your tutor the evidence required for Unit assessment

• write user and technical documentation

• evaluate your project

• give your tutor the evidence required for course assessment

60 TOPIC 6. PROJECT REPORT

6.1 Prior Knowledge

You should already know the seven stages of the software development process:
Analysis - Design - Implementation - Testing - Documentation - Evaluation -
Maintenance:

You should be at the stage where you have completed the first 4 stages for your
Advanced Higher Project. The next 2 stages are Documentation and Evaluation. Both
of these are required for the course assessment.

6.2 Introduction

���
����

������

��	
���������

�������

�����	�����

	��������

�����������

Once again, most of this section is about YOUR project.

If you have completed the work laid out in the previous 5 topics, you should by now
have completed your project. You have probably spent 30 - 40 hours on this work.
Your Record of Work should now be complete, including evidence of analysis, design,
implementation and testing.

All that is left to do, is to produce the final report that is required for course assessment.
This should take no more than 10 hours.

This topic will show you what is required.

6.3 Evidence required for Unit Assessment

The evidence required for Unit Assessment is simply your Record of Work. If you have
been following the instructions in previous topics, and keeping your Record of Work up
to date throughout all the stages of development of your Project, then you should have
nothing more to do!

© HERIOT-WATT UNIVERSITY

6.3. EVIDENCE REQUIRED FOR UNIT ASSESSMENT 61

Checking your Record of Work for Unit Assessment Evidence

30 min

Use this checklist to make sure your Record of Work contains all the evidence required
for unit Assessment:

Stage Evidence required Check

Analysis Problem specification, including

• scope and boundaries (Topic 2.2.2)

• list of functional requirements (Topic 2.2.3)

Evidence of planning, including

• list of sub-tasks (Topic 2.3.1)

• notes justifying selection of strategy (Topic 2.5)

Design Pages from record of work, showing

• annotated sketches of user interface design(s) (Topic
3.2)

• pseudocode and/or structure diagrams (Topic
3.4.2/3)

Implementation Annotated program listings and screen shots, showing

• development of software through various stages
(Topic 4.4)

• final complete version of software

• use of modular programming techniques

• use of complex languages structures

Testing Evidence of testing, including

• systematic test plan (Topic 4.2)

• normal, extreme and exceptional test data (Topic 5.2)

• results of testing (tables and/or annotated screen
shots) (Topic 5.3)

• summary of test results (Topic 5.6)

Hopefully, you were able to tick off all these items. If any are missing, you will need to
return now to the appropriate topic, and produce the required evidence.

© HERIOT-WATT UNIVERSITY

62 TOPIC 6. PROJECT REPORT

Notes:

1. You may also have some additional items in your Record of Work. That’s fine
- don’t get rid of them! They may be needed for Course Assessment (see next
sub-topic)

2. DO NOT waste time typing up neat copies of any of the above! The Record of Work
is a working document. There is no extra credit given for professional presentation.

3. There is no "pass mark" for Unit Assessment. If you have adequate evidence (as
listed above) of analysis, design, implementation and testing of a software solution
to an appropriate level of problem, you will pass the unit.

6.4 Evidence required for Course Assessment

For Course Assessment, you must provide a Project Report which includes

• the problem specification

• evidence of project planning

• evidence of a completed solution (preferably files on a CD, plus hard copy of coding
/ data files, screen shots)

• user documentation and technical documentation

• an evaluation report

Creating a CD

Copy all the completed program files and data files on to a CD, and label it with your
name, date, school and project title.

© HERIOT-WATT UNIVERSITY

6.4. EVIDENCE REQUIRED FOR COURSE ASSESSMENT 63

Checking your Record of Work for Course Assessment Evidence

30 min

Stage Evidence required Check

Analysis Problem specification, including

• scope and boundaries (Topic 2.2.2)

• list of functional requirements (Topic 2.2.3)

Analysis Evidence of planning, including

• list of sub-tasks (Topic 2.3.1)

• time schedule (Topic 2.3.2/3)

• resources required (Topic 2.6)

Implementation Evidence of completed software, including:

• program files on CD (Topic 4.4)

• data files on CD (if appropriate)

• hard copy of program (and data) files

• screen shots of aspects of competed software

You should have all this evidence (and more) in your Record of Work. If not, go back to
the appropriate sub-topic and produce the required evidence.

Notes:

1. For course assessment, your tutor will allocate marks to all of these items. There
is no "pass mark", but the total mark out of 60 (however high or low) is added to
your exam mark out of 140 to give a total out of 200, on which your overall grade
(A,B,C,D or fail) is calculated. Ask your tutor to show you the marking scheme,
so that you can see what marks are allocated for, and ensure you haven’t missed
anything important.

2. If any items of evidence are missing, and you cannot produce them, you will not
"fail". You will simply lose marks and risk getting a lower grade for the course.

3. As you will see from the marking scheme, some of the marks (10 out of 60) are
for "process skills" - analysis, decision making, research, time management, use
of correct terminology. Your tutor will base these on observation during the project
as well as on the final evidence.

© HERIOT-WATT UNIVERSITY

64 TOPIC 6. PROJECT REPORT

Finally, there are 3 items that you need to produce that you DON’T already have in your
Record of Work. These are:

• User Documentation

• Technical Documentation

• Evaluation Report

You will create these as you work through the next two sections.

6.5 User and Technical Documentation

User Documentation

180 min
For your Advanced Higher project report, you should produce a User Guide,
approximately 1-2 A4 pages in length, which includes:

• a description of the features of your software (what your software can do)

• a description of the user interface (how to use the software) - you may want to
include some labelled screen shots to illustrate this.

• some help and troubleshooting information (this could be in the form of FAQs
based on the responses to your user questionnaire)

Notes:

1. There are 10 marks allocated for the User Documentation (2 for each of the points
listed above, and 4 for "clarity and presentation"

2. The User Documentation can be presented as a word processed document, or as
a slide presentation or as web-pages

3. The help and troubleshooting may be incorporated within your software as on-line
help

4. However, note that the marks are for the content and clarity of the information,
rather than any fancy presentation style.

File your completed User Documentation in the Doumentation section of your Record of
Work.

© HERIOT-WATT UNIVERSITY

6.5. USER AND TECHNICAL DOCUMENTATION 65

Technical Documentation

90 min
For your Advanced Higher project report, you must also produce Technical
Documentation. This will be no more than 1 A4 page in length, and should include:

• software requirements (what Operating system and other software is required)

• hardware requirements (is there a minimum amount of RAM or processor
type/speed, or does your software require any particular peripherals)

• list of files provided (this should list and describe all the files on the CD)

Notes:

1. There are 10 marks allocated for Technical Documentation (2 for each of the points
listed above, and 4 for "clarity and presentation"

2. The Technical Documentation can be presented as a word processed document,
or as a slide presentation or as web-pages

3. However, note that the marks are for the content and clarity of the information,
rather than any fancy presentation style.

File your completed Technical Documentation in the Documentation section of your
Record of Work.

© HERIOT-WATT UNIVERSITY

66 TOPIC 6. PROJECT REPORT

© HERIOT-WATT UNIVERSITY

6.6. EVALUATION REPORT 67

6.6 Evaluation Report

Only one more item is required - the Evaluation Report.

You are required to evaluate

• your finished product using 7 criteria

• your own process skills using 2 criteria

Evaluation Report

120 min

For your Advanced Higher project report, you should produce an Evaluation Report,
approximately 1-2 A4 pages in length.

The first section is an evaluation of your finished software. You should write 7 brief
paragraphs, critically evaluating your software in terms of

• fitness for purpose (does it do everything as specified; if not, why not; does it
include any extra features)

• user interface (is it easy to use and learn; could it be improved in any way)

• robustness (does the program cope with external errors and unforeseen mishaps
during execution)

• reliability (does the program produce correct results for all inputs)

• portability (will it run under different OS; what modifications might be required to
do this)

• efficiency (does it waste processor time, RAM or storage space)

• maintainability (what steps have been taken to ensure it is easily maintained)

The second section is an evaluation of your application of process skills.

You should already have evidence in your Record of Work. All you need to do is write
a brief critical evaluation of your performance, referring to the appropriate section(s) of
your Record of Work, under each of the following headings:

• consideration of alternative strategies

• time management

Notes:

1. There are 20 marks allocated for the User Documentation (2 for each of the points
listed above, except for "alternative strategies" which gets 4 marks.

2. It pays to be honest! If your time management wasn’t good, say so, and give your
reasons. You get marks here not for the time management itself, but for your own
critical evaluation of your performance.

© HERIOT-WATT UNIVERSITY

68 TOPIC 6. PROJECT REPORT

3. The Evaluation Report should be presented as a word processed document, with
references to the evidence in your Record of Work.

4. Once again, note that the marks are for the content and clarity of the information,
rather than any fancy presentation style.

File your completed Evaluation Report in the Evaluation section of your Record of Work.

© HERIOT-WATT UNIVERSITY

6.7. SUMMARY 69

6.7 Summary

You have now completed the Advanced Higher project, and should have a folder
containing the following evidence:

For Unit Assessment:

• a record of work providing evidence of analysis, design, implementation and
testing

For Course Assessment:

• a project specification and evidence of project planning for Course Assessment

• a CD with your completed software and any associated files

• User Documentation

• Technical Documentation

• an Evaluation Report

© HERIOT-WATT UNIVERSITY

70 GLOSSARY

Glossary

data flow diagrams

A type of diagram used in the design of software systems, A program or module
is represented by an oval shape. Arrows are used to represent any data flowing in
or out of the module.

feasibility study

At a very early stage in any project development, a feasibility study is carried out
to judge whether or not the project can be achieved, within any known constraints.
These constraints include time, finance and availability of appropriate hardware,
software and expertise.

functional requirements

A list of all the functions which the finished program or system must be able to do.
This forms a main part of the specification.

project specification

A document agreed between the systems analyst and the client during the analysis
phase, which defines clearly all the functional requirements of the systems to be
developed. It forms a binding legal agreement between the developer and the
client.

Pseudocode

A design notation used in the design of computer programs. It consists of
a combination of ordinary English and programming language specific words.
Statements may be numbered to assist coding.

Structure charts

A type of diagram used as a design tool. Modules, sub-programs or individual
steps are represented by boxes, linked by lines. Data flow between boxes is shown
by labelled arrows.

systems analyst

Usually an experienced programmer, who is responsible for the analysis and
design phases of software development. The Systems Analyst, working with
the client, develops the project or system specification, on which the design and
implementation are based.

test plan

A plan devised before implementation of software, listing all the tests to be carried
out, the test data to be used, and the expected outcomes.

© HERIOT-WATT UNIVERSITY

ANSWERS: TOPIC 1 71

Answers to questions and activities

1 The Advanced Higher Project

Considering Possible Project Ideas (page 5)

Q1:

1. (Yes) This would be a good project. You will need to use advanced features of
the HLL you choose, possibly including 2-D arrays, file handling and a good user
interface.

2. (No) If it can be done using only code easily available in the public domain, you
won’t be able to show the assessor that you have had to design and implement
complex algorithms yourself. However, it would be OK if you used a combination of
public domain code and your own coding.

3. (No) This is TOO complex! It would take you much more than 40 hours. You need
to be a bit more realistic.

4. (No) If it could be done by a Higher candidate, then it is too straightforward for
Advanced Higher. But it is a good idea. Can you think how to extend it a bit to
make it complex enough for AH?

5. (Yes) This is based on the same area as the last example, but it involves file
handling, which you have only learned about in the AH course.

6. (No) NLP is an interesting topic to consider, especially if you have done the AI unit
at Higher. But if it only involves a very limited vocabulary and simplistic grammar, it
could be done using the basics of Prolog you learned at Higher.

7. (Yes) This is better. You are going to implement a proper grammar, with some real-
life complexity in it. The size of the vocabulary isn’t really much of an issue. If it
works for a small vocabulary, it should extend to a larger one. Your research will
also benefit you if you are doing the AI optional unit.

8. (No) This is over the top! To create a system to handle ANY input would require
considerably more skill than you have and certainly more than the 40 hours you
have at your disposal. You need to cut it back a little!

9. (No) If your CAL package could be created using a basic presentation package
or similar, then it is nearer Int 2 level that AH. Don’t be put off, though. A CAL
implementation is a good idea, but you will need to specify a more complex
scenario. For example ... ?

10. (Yes) That’s better! If you need to use a scripting language behind the scenes, and
are going to be involved in file handling, then it becomes an AH problem.

11. (Yes) And here’s another good CAL idea. This time, you will need to show an
understanding of some low level language concepts. This will also benefit you if you
are going to choose the Computer Architecture unit. Don’t make it too complicated
though - you only have 40 hours.

12. (Yes) Here’s another good idea, especially if you have done Computer networking
at Higher. The only problem you might have to consider is whether the
school/college network will allow you to test your application.

13. (No) A straightforward web site won’t give you the opportunity to demonstrate any
AH software development knowledge or skills, even if you choose to write it in pure
HTML. But that doesn’t mean that a web site is a no-go area ...

© HERIOT-WATT UNIVERSITY

72 ANSWERS: TOPIC 1

14. (Yes) This web site is much more suitable, as it will involve you in some new
programming techniques, and in file handling.

15. (No) This is potentially a good idea for the AI people, but if it can be implemented
with simple rules in an expert system shell, then it is too simple.

16. (Yes) This is more like it. You would need to use a declarative language, or perhaps
even a procedural language, and some fairly complex algorithms.

Answers from page 8.

Q2: a) you must pass 3 units, complete a project and sit an exam

Q3: c) is required to pass the unit and counts 40% of the course award

Q4: b) is your own choice, but it must be suitably complex

Q5: d) will help you keep track of progress, and must be maintained for assessment

Q6: a) a software solution to a computing problem

© HERIOT-WATT UNIVERSITY

ANSWERS: TOPIC 2 73

2 Analysis

Revision (page 12)

Q1: a) Analysis, Design, Implementation

Q2: c) turn a vague problem description into a precise program specification

Q3: b) agreed between the client and the developer

Q4: d) should be the starting point for any software development, large or small.

Answers from page 28.

Q5: a) is a formal document agreed between the client and the systems analyst

Q6: c) should be included in the project specification

Q7: b) identifying sub-tasks, times and target dates

Q8: d) should be based on research and defined criteria

Q9: a) already contains several items including a specification and project plan

© HERIOT-WATT UNIVERSITY

74 ANSWERS: TOPIC 3

3 Design

Revision (page 30)

Q1: b) Analysis, Design, Implementation

Q2: c) the detailed specification agreed between client and analyst

Q3: b) essential, even in small projects

Answers from page 38.

Q4: b) the user interface and program structure/algorithm must be designed

Q5: c) top down design with stepwise refinement

Q6: b) design notations

Q7: d) can be shown on either structure diagrams or pseudocode

Q8: a) should now contain a specification, a project plan and evidence of design

© HERIOT-WATT UNIVERSITY

ANSWERS: TOPIC 4 75

4 Implementation

Revision (page 42)

Q1: b) follows analysis and design in the software development process

Q2: c) can save time at the implementation stage

Q3: b) you will use a software development environment

© HERIOT-WATT UNIVERSITY

76 ANSWERS: TOPIC 5

5 Testing

Revision (page 50)

Q1: b) follows implementation in the software development process

Q2: c) extreme test data

Q3: b) module testing

Q4: b) testing every function defined in the functional specification

© HERIOT-WATT UNIVERSITY

	The Advanced Higher Project
	Introduction
	Unit, Project and Course
	Record Keeping - the Record of Work
	Choosing a suitable project
	Group Projects
	Making up your mind
	Summary
	Revision Questions

	Analysis
	Prior Knowledge and Revision
	Introduction
	The Project Specification
	Project Planning
	Research
	Selecting strategies
	Resources
	Summary
	Revision Questions

	Design
	Prior Knowledge and Revision
	Introduction
	User Interface Design
	Design Methodologies
	Design Notations
	Summary
	Revision Questions

	Implementation
	Prior Knowledge and Revision
	Introduction
	Creating a test plan
	Implementing your design
	Keeping your Record of Work
	Summary

	Testing
	Prior Knowledge and Revision
	Introduction
	Carrying out your test plan
	Evidence of Testing
	Rectifying Errors and Bugs
	A User Questionnaire
	Summarising your results
	Summary

	Project Report
	Prior Knowledge
	Introduction
	Evidence required for Unit Assessment
	Evidence required for Course Assessment
	User and Technical Documentation
	Evaluation Report
	Summary

	Glossary
	Answers to questions and activities
	 The Advanced Higher Project
	 Analysis
	 Design
	 Implementation
	 Testing

